Hypertension Exercise Program

Hypertension Holistic Treatment

Get Instant Access

Synonyms of this drug are dizoxide; eudemine, hyperstat, hypertonalum, mutabase, proglicem.

21.3.1 Drugs related to thiazide diuretics

Diuretic drugs metolazone, chlorothalidon, and indapamide are diuretics and antihypertensive drugs. Chemically they are not thiazides; however, being sulfonamide derivatives and having, in a certain sense, structural similarities and a similar mechanism of action common among thiazides, with the exception being that they do not inhibit carbonic anhy-drase. Therefore, they are formally seen in the same group as thiazide diuretics.

The ability of metolazone, chlorothalidone, and indapamide to remove edematous liquid from the body is practically identical to that of thiazide diuretics. These drugs are used for relieving edema associated with hepatic, renal, and cardiac diseases, as well as for treating general hypertension either independently, or in combination with other drugs.

Metolazone: Metolazone, 7-chloro-1,2,3,4-tetrahydro-2-methyl-4-oxo-3-o-tolyl-6-quina-zolinsulfonamide (21.3.20), is synthesized from 5-chloro-2-methylaniline. The amino group is acylated by ethyl chloroformate, forming 5-chloro-N-ethoxycarbonyl-2-methylaniline (21.3.15). The product, upon subsequent reaction with chlorosulfonic acid and ammonia, is transformed in the usual manner into 4-sulfonamido-5-chloro-N-ethoxycarbonyl-2-methyl-aniline (21.3.16). The methyl group of this product is oxidized by potassium permanganate, giving 5-sulfonamido-4-chloro-N-ethoxycarbonyl anthranylic acid (21.3.17). Upon treating this with thionyl chloride it cycles into the corresponding anhydride (21.3.18). This reacts with o-toluidine, turning it into 2-amino-5-aminosulfonyl-4-chloro-o-toluolbenzamide (21.3.19). Finally, reacting this with dimethylacetal acetic acid gives metolazone (21.3.20) [41-47].

H2 ClCOOC2H5 Cl^*s.NH-COOC2H5 2,'

CH3 H2N-SO2'

Was this article helpful?

0 0
Blood Pressure Health

Blood Pressure Health

Your heart pumps blood throughout your body using a network of tubing called arteries and capillaries which return the blood back to your heart via your veins. Blood pressure is the force of the blood pushing against the walls of your arteries as your heart beats.Learn more...

Get My Free Ebook

Post a comment