Mechanism Of Cyclodisone Degradation

The 60 Second Panic Solution

Natural Anxiety Attack Treatment Systems

Get Instant Access

1. R. I. Ellin and J. H. Wills, Oximes antagonistic to inhibitors of Cholinesterase, Part I, J. Pharm. Sci. 53, 995-1007 (1964).

2. T. D. Sokoloski, L. A. Mitscher, J. V. Juvarkar, and B. Hoener, Rate and proposed mechanism of anhydro-tetracycline epimerization in acid solution, J. Pharm. Sci. 66, 1159-1165 (1977).

3. B. A. Hoener, T. D. Sokoloski, L. A. Mitscher, and L. Malspeis, Kinetics of dehydration of epitetracycline in solution, J. Pharm. Sci. 63, 1901-1904(1974).

4. G. L. Amidon, Benzylpenicillin monograph, in Chemical Stability of Pharmaceuticals: A Handbook for Pharmacists, 2nd ed., (K. A. Connors, G. L. Amidon, and V. J. Stella, eds.), pp. 274-283, John Wiley & Sons, New York, 1986, and references therein.

5. G. Gosselin, J. L. Girardet, C. Perigaud, S. Benzaria, I. Lefebvre, N. Schlienger, A. Pompon, and J. L. Imbach, New insights regarding the potential of the pronucleotide approach in antiviral chemotherapy, Acta Biochim. Pol. 43,196-208 (1996).

6. J. P. Hou and J. W. Poole, The amino acid nature of ampicillin and related penicillins, J. Pharm. Sci. 58, 15 10- 15 15 (1 969).

7. M. S. Gogate, Erythromycin monograph, in Chemical Stability of Pharmaceuticals: A Handbook for Pharmacists, 2nd ed., (K. A. Connors, G. L. Amidon, and V. J. Stella, eds.), pp. 457-463, John Wiley & Sons, New York, 1986, and references therein.

8. B. D. Anderson, M. B. Wygant, T. X. Xiang, W. A. Waugh, and V. J. Stella, Preformulation solubility and kinetic studies of 2',3'-dideoxypurine nucleosides: Potential anti-AIDS agents, Inf. J. Pharm. 45, 27-37 (1988).

9. T. Higuchi, A. Havinga, and L. W. Busse, The kinetics of the hydrolysis of procaine, J. Am. Pharm. Assoc., Sci. Ed. 39, 405-410 (1950).

10. A. D. Marcus and S. Baron, A comparison of the kinetics of the acid catalyzed hydrolyses of procainamide, procaine, and benzocaine, J. Am. Pharm. Assoc., Sci. Ed. 48, 85-90 (1959).

11. L. J. Edwards, The hydrolysis of aspirin: A determination of the thermcdynamic dissociation constant and a study of the reaction kinetics by ultraviolet spectrophotometry, Trans. Faraday Soc. 46,723-735 (1950).

12. E. R. Garrett, The kinetics of solvolysis of acyl esters of salicylic acid, J. Am. Chem. Soc. 79, 3401-3408 (1957).

13. T. Higuchi and C. D. Bias, The kinetics of degradation of chloramphenicol in solution I. A study of the rate of formation of chloride ion in aqueous media, J. Am. Pharm. Assoc., Sci. Ed. 42, 707-714 (1953).

14. T. Higuchi, A. D. Marcus, and C. D. Bias, The kinetics of degradation of chloramphenicol in solution II. Overall disappearance rate from buffered solutions, J. Am. Pharm. Assoc., Sci. Ed. 43, 129-134 (1954).

15. T. Higuchi and A. D. Marcus, The kinetics of degradation of chloramphenicol in solution III. The nature, specific hydrogen ion catalysis, and temperature dependencies of the degradative reactions, J. Am. Pharm. Assoc., Sci. Ed. 43,530-535 (1954).

16. A. A. Kondritzer and P. Zvirblis, Stability of atropine in aqueous solution, J. Am. Pharm. Assoc., Sci. Ed. 46, 531-535 (1957).

17. P. Zvirblis, I. Socholitsky, and A. A. Kondritzer, The kinetics of the hydrolysis of atropine, J. Am. Pharm. Assoc., Sci. Ed. 45,450-454 (1956).

18. J. L. Patel and A. P. Lemberger, The kinetics of the hydrolysis of homatropine methylbromide and atropine methylbromide, J. Am. Pharm. Assoc., Sci. Ed. 48, 106-109 (1959).

19. S. Siegel, L. Lachman, and L. Malspeis, A kinetic study of the hydrolysis of methyl DL-alpha-phenyl-2-piperidylacetate, J. Am. Pharm. Assoc., Sci. Ed. 48,431-439 (1959).

20. R. J. Washkuhn, V. K. Patel, and J. R. Robinson, Linear free energy models for ester solvolysis with a critical examination of the alcohol and phenol dissociation model, J. Pharm. Sci. 60, 736-744 (1971).

M. L. Maniar, D. S. Kalonia, and A. P. Simonelli, Alkaline hydrolysis of oligomers of tartrate esters: Effect of a neighboring carboxyl on the reactivity of ester groups, J. Pharm. Sci. 81, 705-709 (1992). S. M. Blaug and D. E. Grant, Kinetics of degradation of the parabens, J. Soc. Cosmet. Chem. 25, 495-506 (1974).

I. A. Hamid and E. L. Parrott, Effect of temperature on solubilization and hydrolytic degradation of solubilized benzocaine and homatropine, J. Pharm. Sci. 60, 901-906(1971).

I. K. Winterborn, B. J. Meakin, and D. J. G. Davies, The effect of cetyltrimethylammonium bromide on the hydrolysis of ^-substituted ethylbenzoates, J. Pharm. Pharmacol. 24,113P (1972).

I. Oh, S. Chi, B. R. Vishnuvajjala, and B. D. Anderson, Stability and solubilization of oxathiin carboxanilide, a novel anti-HIV agent, Int. J. Pharm. 73, 23-31 (1991).

W. Lund and T. Waaler, The kinetics of atropine and apoatropine in aqueous solutions, Acta Chem. Scand. 22, 3085-3097(1968).

J. J. Windheuser, J. L. Sutter, and A. Sarrif, Analysis of scopolamine and its degradation products by GLC and liquid partition chromatography, J. Pharm. Sci. 61, 1311-1313 (1972).

R. M. Patel, T. Chin, and J. L. Lach, Kinetic study of the acid hydrolysis of meperidine hydrochloride, Am. J. Hosp. Pharm. 25, 256-261 (1968).

E. R. Garrett, Prediction of stability in pharmaceutical preparations X. Alkaline hydrolysis of hydrocortisone hemisuccinate, J. Pharm. Sci. 51, 445-450 (1962).

J. W. Mauger, A. N. Paruta, and R. J. Gerraughty, Consecutive first-order kinetic consideration of hydrocortisone hemisuccinate, J. Pharm. Sci. 58, 574-578 (1969).

B. D. Anderson and V. Taphouse, Initial rate studies of hydrolysis and acyl migration in methylpredinisolone 21-hemisuccinate and 17-hemisuccinate, J. Pharm. Sci. 70, 181-186 (1981).

T. Suzuki, Studies on decomposition and stabilization of drugs in solution. X. Chemical kinetic studies on aqueous solution of succinylcholine chloride. 2. Overall velocity constants for succinylcholine chloride hydrolysis as a function of pH, Chem. Pharm. Bull. 10, 912-921(1962).

J. J. Boehrn and R. I. Poust, Hydrolysis of succinylcholine chloride in pH range 3.0 to 4.5, Chem. Pharm. Bull. 32, 1113-1119 (1984).

E. R. Garrett and K. Seyda, Prediction of stability in pharmaceutical preparations XX: Stability evaluation and bioanalysis of cocaine and benzoylecgonine by high-perfomance liquid chromatography, J. Pharm. Sci. 72, 258-271 (1983).

E. R. Garrett and D. Maruhn, Prediction of stability in pharmaceutical preparations. XXI: The analysis and kinetics of hydrolysis of a cocaine degradation product, ecgonine methyl ester, plus the pharmacokinetics of cocaine in the dog, J. Pharm. Sci. 83, 269-272(1994).

P. Chung, T. Chin, and J. L. Lach, Kinetics of the hydrolysis of pilocarpine in aqueous solution, J. Pharm. Sci. 59, 1300-1306 (1970).

M. A. Nunes and E. Brochrnann-Hanssen, Hydrolysis and epimerization kinetics of pilocarpine in aqueous solution, J. Pharm. Sci. 63, 716-721 (1974).

H. Bundgaard and S. H. Hansen, Hydrolysis and epimerization kinetics of pilocarpine in basic aqueous solution as determined by HPLC, Int. J. Pharm. 10, 281-289(1982).

C. M. Won, Epimerization and hydrolysis of dalvastatin, a new hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, Pharm. Res. 11, 165-170 (1994).

E. R. Garrett, B. C. Lippold, and J. B. Mielck, Kinetics and mechanisms of lactonization of coumarinic acids and hydrolysis of coumarins I, J. Pharm. Sci. 60, 396-405 (1971).

B. C. Lippold and E. R. Garrett, Kinetics and mechanisms of lactonization of coumarinic acids and hydrolysis of coumarins II, J. Pharm. Sci. 60, 1019-1027 (1971).

J. Fassberg and V. J. Stella, A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogues, J. Pharm. Sci. 81, 676-684 (1992).

M. Hara, H. Hayashi, and T. Yoshida, Kinetics and mechanism of degradation of chlorphenesin carbamate in strongly acidic aqueous solutions, Chem. Pharm. Bull. 34, 3481-3484 (1986).

V. J. Stella, W. K. Anderson, A. Benedetti, W. A. Waugh, and R. B. Killion, Jr., Stability of carmethizole hydrochloride (NSC-602668), an experimental cytotoxic agent, Int. J. Pharm. 71, 157-165 (1991). K. Umprayn, W. Waugh, and V. J. Stella, Mechanism of degradation of the investigational cytotoxic agent, cyclodisone (NSC-348948), Int. J. Pharm. 66, 253-262 (1990).

46. M. Paborji, W. Waugh, and V. J. Stella, Mechanistic investigation of the degradation of sulfamic acid 1,7-heptanediyl ester, an experimental cytotoxic agent, in water and 18 oxygen-enriched water, J. Pharm. Sci. 76, 161-165(1987).

47. A. D. Marcus, The hydrolysis of hydrocortisone phosphate in essentially neutral solutions, J. Am. Pharm. Assoc., Sci. Ed. 49, 383-385 (1960).

48. G. L. Flynn and D. J. Lamb, Factors influencing solvolysis of corticosteroid-21-phosphate esters, J. Pharm. Sci. 59, 1433-1438 (1970).

49. A. Hussain, P. Schurman, V. Peter, and G. Milosovich, Kinetics and mechanism of degradation of echothio-phate iodide in aqueous solution, J. Pharm. Sci. 57, 411-418 (1968).

50. M. C. Crew and F. J. Dicarlo, Identification and assay of isomeric 14C-glyceryl nitrates, J. Chromatogr. 35, 506-512 (1968).

51. H. Nagai, M. Kikuchi, H. Nagano, and M. Shiba, The stability of nicorandil in aqueous solution. I. Kinetics and mechanism of decomposition of N-(2-hydroxyethyl)nicotinamide nitrate (ester) in aqueous solution, Chem. Pharm. Bull. 32, 1063-1070(1984).

52. C. J. Herman and M. J. Groves, Hydrolysis kinetics of phospholipids in thermally stressed intravenous lipid emulsion formulations, J. Pharm. Phamacol. 44,539-542 (1991).

53. M. Grit, N. J. Zuidam, W. J. M. Underberg, and D. J. A. Crommelin, Hydrolysis of partially saturated egg phosphatidylcholine in aqueous liposome dispersions and the effect of cholesterol incorporation on hydrolysis kinetics, J. Pharm. Pharmacol. 45, 490-495 (1992).

54. K. T. Koshy and J. L. Lach, Stability of aqueous solutions of N-acetyl-p-aminophenol, J. Pharm. Sci. 50, 113-118 (1961).

55. A. A. Forist, L. W. Brown, and M. E. Royer, Acid stability of lincomycin, J. Pharm. Sci. 54, 476-477 (1965).

56. S. Goto, W. Tseng, M. Kai, S. Aizawa, and S. Iguchi, Kinetics of degradation of indomethacin in aqueous solution [in Japanese], Yakuzaigaku 29, 118-124 (1969).

57. S. Goto, N. Murao, and S. Iguchi, Kinetics of hydrolysis of compounds related to indomethacin in alkaline region [in Japanese], Yakuzaigaku 33, 139-145 (1973).

58. B. R. Hajratwala and J. E. Dawson, Kinetics of indomethacin degradation I: Presence of alkali, J. Pharm. Sci. 66,27-29 (1977).

59. E. Pawelczyk, B. Knitter, and W. Alejska, Drug decomposition kinetics. LVI. Mechanism and kinetics of hydrolysis of indomethacin in the acid medium, Acta Pol. Pharm. 36, 181-188 (1979).

60. B. J. Meakin, I. P. Tansey, and D. J. G. Davies, The effect of heat, pH and some buffer materials on the hydrolytic degradation of sulphacetamide in aqueous solution, J. Pharm. Phamacol. 23, 252-261 (1971).

61. S. P. King, K. W. Sigvardson, J. Dudzinski, and G. Torosian, Degradation kinetics and mechanisms of moricizine hydrochloride in acidic medium, J. Pharm. Sci. 81, 586-591 (1992).

62. W. D. Korte and M. L. Shih, Degradation of three related bis(pyridinium)aldoximes in aqueous solutions at high concentrations: Examples of unexpectedly rapid amide group hydrolysis, J. Pharm. Sci. 82, 782-786 (1993).

63. P. Finholt, G. Jurgensen, and H. Kristiansen, Catalytic effect of buffers on degradation of penicillin G in aqueous solution, J. Pharm. Sci. 54, 387-393 (1965).

64. J. M. Blaha, A. M. Knevel, D. P. Kessler, J. W. Mincy, and S. L. Hem, Kinetic analysis of penicillin degradation in acidic media, J. Pharm. Sci. 65, 1165-1170 (1976).

65. J. P. Hou and J. W. Poole, Kinetics and mechanism of degradation of ampicillin in solution, J. Pharm. Sci. 58, 447-454(1969).

66. H. Bundgaard, Polymerization of penicillins. II. Kinetics and mechanism of dimerization and self-catalyzed hydrolysis of amoxycillin in aqueous solution, Acta Pharm. Suec. 14, 47-66 (1977).

67. H. Zia, M. Tehrani, and R. Zargarbashi, Kinetics of carbenicillin degradation in aqueous solutions, Can. J. Pharm. Sci. 9,112-117 (1974).

68. M. A. Schwartz, A. P. Granatek, and F. H. Buckwalter, Stability of potassium phenethicillin. I. Kinetics of degradation in aqueous solution, J. Pharm. Sci. 51, 523-526(1962).

69. M. A. Schwartz, E. Bara, I. Rubycz, and A. P. Granatek, Stability of methicillin, J. Pharm. Sci. 54, 149-150 (1965).

70. T. Yamana and A. Tsuji, Comparative stability of cephalosporins in aqueous solution: Kinetics and mechanisms of degradation, J. Pharm. Sci. 65, 1563-1574 (1976).

A. Tsuji, E. Nakashima, Y. Deguchi, K. Nishide, T. Shimizu, S. Horiuchi, K. Ishikawa, and T. Yamana, Degradation kinetics and mechanism of aminocephalosporins in aqueous solution: Cefadroxil, J. Pharm. Sci. 70, 1120-1128 (1981).

A. Tsuji, E. Nakashima, K. Nishide, Y. Deguchi, S. Hamano, and T. Yamana, Physicochemical properties of amphoteric ß-lactam antibiotics. III. Stability, solubility, and dissolution behavior of cefatrizine and ce-fadroxil as a function of pH, Chem. Pharm. Bull. 31, 4057-4069 (1983).

S. M. Berge, N. L. Henderson, and M. J. Frank, Kinetics and mechanism of degradation of cefotaxime sodium in aqueous solution, J. Pharm. Sci. 72,59-63 (1983).

H. Fabre, N. H. Eddine, and G. Berge, Degradation kinetics in aqueous solution of cefotaxime sodium, a third-generation cephalosporin, J. Pharm. Sci. 73, 611-618 (1984).

V. D. Gupta, Stability of cefotaxime sodium as determined by high-performance liquid chromatography, J. Pharm. Sci. 73, 565-567 (1984).

S. W. Baertschi, D. E. Dorman, J. L. Occolowitz, L. A. Spangle, M. W. Collins, M. E. Wildfeuer, and L. J. Lorenz, Isolation and structure elucidation of a novel product of the acidic degradation of cefaclor, J. Pharm. Sci. 82, 622-626 (1993).

M. J. Skibic, K. W.Taylor, J. L. Occolowitz, M. W. Collins, J. W. Paschal, L. J. Lorenz, L. A. Spangle, D. E. Dorman, and S. W. Baertschi, Aqueous acidic degradation of the carbacephalosporin loracarbef, J. Pharm. Sci. 82, 1010-1017 (1993).

H. Bundgaard, Polymerization of penicillins: Kinetics and mechanism of di- and polymerization of ampicillin in aqueous solution, Acta Pharm. Suec. 13, 9-26 (1976).

L. Malspeis and D. Gold, Stability of cycloserine in bufferedaqueous solutions, J. Pharm. Sci. 53, 1173-1180 (1964).

E. R. Garrett, J. T. Bojarski, and G. J. Yakatan, Kinetics of hydrolysis of barbituric acid derivatives, J. Pharm. Sci. 60, 1145-1154 (1971).

L. A. Gardner and J. E. Goyan, Mechanism of phenobarbital degradation, J. Pharm. Sci. 62, 1026-1027 (1973).

J. T. Carstensen, E. G. Serenson, and J. J. Vance, Use of Hammett graphs in stability programs, J. Pharm. Sci. 53, 1547-1548 (1964).

Z. R. Zaidi, F. J. Sena, and C. P. Basilio, Stability assay of allantoin in lotions and creams by high-pressure liquid chromatography, J. Pharm. Sci. 71, 997-999 (1982).

B. R. Vishnuvajjala and J. C. Cradock, Tricyclo[4.2.2.0]dec-9-ene-3,4,7,8-tetracarboxylic acid diimide: Formulation and stability studies, J. Pharm. Sci. 75, 301-303 (1986).

J. M. Sisco and V. J. Stella, Is ICRF-187 [(+)-1,2-bis(3,5-dioxopiperazinyl-l-yl)propane] unusually reactive for an imide? Pharm. Res. 9, 1076-1082 (1992).

B. B. Hasinoff, An HPLC and spectrophotometric study of the hydrolysis of ICRF-187 (dextrazoxane, (+)- 1,2-bis(3,5-dioxopiperazinyl- l-yl)propane) and its one-ring opened intermediates, Int. J. Pharm. 107, 67-76 (1994).

W. W. Han, G. J. Yakatan, and D. D. Maness, Kinetics and mechanisms of hydrolysis of 1,4-benzodiazepines II: Oxazepam and diazepam, J. Pharm. Sci. 66, 573-577 (1977).

A. G. Davidson, S.-M. Chee, F. M. Millar, and D. Watson, Isolation and identification of an alkali-catalyzed hydrolysis product of nitrazepam, Int. J. Pharm. 63, 29-34 (1990).

A. G. Davidson and G. A. Smail, Isolation and characterisation of an acid-catalyzed intermediate hydrolysis product of nitrazepam, Int. J. Pharm. 69,1-3 (1991).

H. V. Maulding, J. P. Nazareno, J. E. Pearson, and A. F. Michaelis, Practical kinetics III: Benzodiazepine hydrolysis, J. Pharm. Sci. 64, 278-284 (1975).

W. W. Han, G. J. Yakatan, and D. D. Maness, Kinetics and mechanisms of hydrolysis of 1 ,4-benzodiazepines I: Chlordiazepoxide and demoxepam, J. Pharm. Sci. 65, 1198-1204 (1976).

M. Konishi, K. Hirai, and Y. Mori, Kinetics and mechanism of the equilibrium reaction of triazolam in aqueous solution, J. Pharm, Sci. 71, 1328-1334 (1982).

M. Ikeda and T. Nagai, Kinetics of hydrolysis of oxazolam in aqueous solution, Chem. Pharm. Bull. 32, 1080-1090 (1984).

T. Kuwayama, Y. Kurono, T. Muramatsu, T. Yashiro, and K. Ikeda, The behavior of 1 ,4-benzodiazepine drugs in acidic media. V. Kinetics of hydrolysis of flutazolam and haloxazolam in aqueous solution, Chem. Pharm. Bull. 34, 320-326 (1986).

95. Y. Kurono, T. Kuwayama, K. Kamiya, T. Yashiro, and K. Ikeda, The behavior of 1,4-benzodiazepine drugs in acidic media. II. Kinetics and mechanism of the acid-base equilibrium reaction of oxazolam, Chem. Pharm. Bull. 33, 1633-1640 (1985).

96. Y. Kurono, H. Tani, T. Kuwayama, K. Hatano, T. Yashiro, and K. Ikeda, Kinetics and mechanism of the acid-base equilibrium and the hydrolysis of benzodiazepinooxazines, Chem. Pharm. Bull. 39, 3323-3326 (1991).

97. Y. Kurono, H. Tamaki, T. Kuwayama, T. Ichii, H. Sawabe, T. Yashiro, K. Ikeda, and H. Bundgaard, Kinetics and mechanism of the acid-base equilibrium of mexazolam analogues: A modification of the mechanism proposed previously for mexazolam, Int. J. Pharm. 80, 135-143 (1992).

98. S. Yoshioka, H. Ogata, T. Shibazaki, and T. Inoue, Stability of sulpyrine. I. Reversible hydrolysis in alkaline solution, Chem. Pharm. Bull. 25, 475-483 (1977).

99. S. Yoshioka, H. Ogata, T. Shibazaki, and T. Inoue, Stability of sulpyrine. II. Hydrolysis in acid solution, Chem. Pharm. Bull. 25, 484-490 (1977).

100. J. E. Cruz, D. D. Maness, and G. J. Yakatan, Kinetics and mechanism of hydrolysis of furosemide, Int. J. Pharm. 2,275-281 (1979).

101. A. G. Ghanekar, V. D. Gupta, and C. W. Gibbs, Stability of furosemide in aqueous systems, J. Pharm. Sci. 67, 808-811 (1978).

102. J. J. Windheuser and T. Higuchi, Kinetics of thiamine hydrolysis, J. Pharm. Sci. 51, 354-364 (1962).

103. S. M. Walters, Influence of pH on hydrolytic decomposition of diethylpropion hydrochloride: Stability studies on drug substance and tablets using high-performance liquid chromatography, J. Pharm. Sci. 69, 1206-1209 (1980).

104. J. H. Beijnen and W. J. M. Underberg, Degradation of mitomycin C in acidic solution, Int. J. Pharm. 24, 219-229 (1985).

105. W. J. M. Underberg and H. Lingeman, Aspects of the chemical stability of mitomycin and porfiromycin in acidic solution, J. Pharm. Sci. 72, 549-553 (1983).

106. F. J. Alvarez and R. T. Slade, Kinetics and mechanism of degradation of zileuton, a potent 5-lipoxygenase inhibitor, Pharm. Res. 9, 1465-1473 (1992).

107. A. J. Ross, M. C. Go, D. L. Casey, and D. J. Palling, Kinetics and mechanism of the hydrolysis of a 2-substituted imidazoline, cibenzoline (cifenline), J. Pharm. Sci. 76, 306-309 (1987).

108. G. P. Moloney, D. J. Craik, and M. N. Iskander, Qualitative analysis of the stability of the oxazine ring of various benzoxazine and pyridooxazine derivatives with proton nuclear magnetic resonance spectroscopy, J. Pharm. Sci. 81, 692-697 (1992).

109. N. Inotsume and M. Nakano, Reversible azomethine bond cleavage of nitrofurantoin in acidic solutions at body temperature, Int. J. Pharm. 8, 111-119 (1981).

110. G. Ertan, Y. Karasulu, and T. Guneri, Degradation and gastrointestinal stability of nitrofurantoin in acidic and alkaline media, Int. J. Pharm. 96, 243-248 (1993).

111. J. K. Seydel, Physicochemical studies on rifampicin, Antibiot. Chemother. 16, 380-391 (1970).

112. T. Yamana, Y. Mizukami, and A. Tsuji, Studies on the stability of drugs. XVII. Stability of benzothiadiazines. (8). Kinetics of acid-base catalysed hydrolysis of chlorothiazide, Chem. Pharm. Bull. 16, 396-404 (1968).

113. J. A. Mollica, C. R. Rehm, and J. B. Smith, Hydrolysis of hydrochlorothiazide, J. Pharm. Sci. 58, 635-636 (1969).

114. J. A. Mollica, C. R. Rehm, J. B. Smith, and H. K. Govan, Hydrolysis of benzothiadiazines, J. Pharm. Sci. 60, 1380-1384 (1971).

115. E. R. Garrett and G. J. Yakatan, Solvolysis of 5-halouridines and related nucleosides, J. Pharm. Sci. 57, 1478-1487 (1968).

116. R. E. Notari and J. L. DeYoung, Kinetics and mechanisms of degradation of the antileukemic agent 5-azacytidine in aqueous solution, J. Pharm. Sci. 64, 1148-1157 (1975).

117. K. K. Chan, D. D. Giannini, J. A. Staroscik, and W. Sadee, 5-Azacytidine hydrolysis kinetics measured by high-pressure liquid chromatography and 13C-NMR spectroscopy, J. Pharm. Sci. 68, 807- 812 (1979).

118. R. E. Notari, M. L. Chin, and R. Wittebort, Arabinosylcytosine stability in aqueous solutions: pH profile and shelflife predictions, J. Pharm. Sci. 61, 1189-1196 (1972).

119. R. E. Notari, M. L. Chin, and A. Cardoni, Intermolecular and intramolecular catalysis in deamination of cytosine nucleosides, J. Pharm. Sci. 59, 28-32 (1970).

120. H. Ehrsson, S. Eksborg, I. Wllin, and S. Nilsson, Degradation of chlorambucil in aqueous solution, J. Pharm. Sci. 69, 1091-1094 (1980).

D. C. Chatteji, R. L. Yeager, and J. F. Gallelli, Kinetics of chlorambucil hydrolysis using high-pressure liquid chromatography, J. Pharm. Sci. 71, 50-54 (1982).

K. P. Flora, J. C. Cradock, and J. A. Kelley, The hydrolysis of spirohydantoin mustard, J. Pharm. Sci. 71, 1206-1211 (1982).

T. 0. Oesterling, Aqueous stability of clindamycin, J. Phurm. Sci. 59, 63-67 (1970).

A. F. Fell and S. M. Plag, Stability-indicating assay for azathioprine and 6-mercaptopurine by reversed-phase high-performance liquid chromatography, J. Chromatogr. 186, 691-704 (1979).

M. J. Reader and C. B. Lines, Decomposition of thimerosal in aqueous solution and its determination by high-performance liquid chromatography, J. Pharm. Sci. 72, 1406-1409 (1983).

I. Caraballo, A. M. Rabasco, and M. Femadez-Arevalo, Study of thimerosal degradation mechanism, Int. J. Pharm. 89, 213-221 (1993).

M. A. Allsopp, G. J. Sewell, C. G. Rowland, C. M. Riley, and R. L. Schowen, The degradation of carboplatin in aqueous solutions containing chloride or other selected nucleophiles, Int. J. Pharm. 69, 197-210 (1991). S. A. Khalil and S. El-Masry, Instability of digoxin in acid medium using a nonisotopic method, J. Pharm. Sci. 67, 1358-1360 (1978).

L. A. Sternson and R. D. Shaffer, Kinetics of digoxin stability in aqueous solution,J. Pharm. Sci. 67, 327-330 (1978).

N. T. Nguyen and R. E. Notari, Substituent effects on degradation rates and pathways of cytosine nucleosides, J. Pharm. Sci. 78, 802-806 (1989).

L. J. Ravin, C. A. Simpson, A. F. Zappala, and J. J. Gulesich, Hydrolysis of idoxuridine, J. Pharm. Sci. 53, 1064-1066 (1964).

A. V. Schepdael, N. Ossembe, L. P. Herdewijn, E. Roets, and J. Hoogmartens, Kinetics of the hydrolysis of 2,3-dideoxyguanosine: A potent anti-HIV agent, Int. J. Pharm. 73, 105-1 10 (1991).

M. Brandl, R. Strickley, T. Bregante, L. Gu, and T. W. Chan, Degradation of 4'-azidothymidine in aqueous solution, Int. J. Pharm. 93 75-83 (1993).

M. Safadi, D. S. Bindra, T. Williams, R. C. Moschel, and V. J. Stella, Kinetics and mechanism of the acid-catalyzed hydrolysis of 0"-benzylguanine, Int. J. Pharm. 90, 239-246 (1993).

M. L. Wolfrom, R. D. Schuetz, and L. F. Cavalieri, Chemical interaction of amino compounds and sugars. III. The conversion Of D-glucose to 5-(hydroxymethyl)-2-furaldehyde, J. Am. Chem. Soc. 70, 5 14-517 (1948). R. B. Taylor, B. M. Jappy, and J. M. Neil, Kinetics of dextrose degradation under autoclaving conditions, J. Pharm. Pharmacol. 24, 121-129 (1972).

R. B. Taylor and V. C. Sood, An h.p.l.c. study of the initial stages of dextrose decomposition in neutral solution, J. Pharm. Pharmacol. 30, 510-511 (1978).

C. A. Brownley and L. Lachman, Browning of spray-processed lactose, J. Pharm. Sci. 53, 452-454 (1964). K. T. Koshy, R. N. Duvall, A. E. Troup, and J. W. Pyles, Factors involved in the browning of spray-dried lactose, J. Pharm. Sci. 54, 549-554 (1965).

P. Kurath, P. H. Jones, R. S. Egan, and T. J. Pemn, Acid degradation of erythromycin A and erythromycin

B, Experientia 27, 362-363 (1971).

P. J. Atkins, T. O. Herbert, and N. B. Jones, Kinetic studies on the decomposition of erythromycin A in aqueous acidic and neutral buffers, Int. J. Pharm. 30, 199-207 (1986).

D. C. Monkhouse, L. V. Campen, and A. J. Aguiar, Kinetics of dehydration and isomerization of prostagland-ins E, and E2, J. Pharm. Sci. 62, 576-580(1973).

R. G. Stehle and T. O. Oesterling, Stability of prostaglandin E, and dinoprostone (prostaglandin E2) under strongly acidic and basic conditions, J. Pharm. Sci. 66, 1590-1595 (1977).

H. Lee, H. J. Lambert, and R. L. Schowen, On the mechanism of dehydration of a beta-hydroxycyclopen-tanone analogue of prostaglandin Eb J. Pharm. Sci. 73, 306-310 (1984).

T. Kawaguchi and Y. Suzuki, Dehydration and epimerization of 7-thiaprostaglandin E1 analogues, J. Pharm. Sci. 75, 992-994 (1986).

M. N. Nassar, C. A. House, and S. N. Agharkar, Stability of batanopride hydrochloride in aqueous solutions, J. Pharm. Sci. 81, 1088-1091 (1992).

R. E. Notari and S. M. Caiola, Catalysis of streptovitacin A dehydration: Kinetics and mechanisms, J. Pharm. Sci. 58, 1203-1208 (1969).

J. M. T. Hamilton-Miller, The effect of pH and of temperature on the stability and bioactivity of nystatin and amphotericin B, J. Pharm. Pharmacol. 25, 401-407 (1973).

149. G. J. Friis and H. Bundgaard, Kinetics of degradation of cyclosporin A in acidic aqueous solution and its implication in its oral absorption, Int. J. Pharm. 82, 79-83 (1992).

150. B. G. Snider, T. A. Runge, P. E. Fagerness, R. H. Robins, and B. D. Kaluzny, Identification of degradation products occurring in acidic solutions of a 21-aminosteroid (tirilazad), Int. J. Pharm. 66, 63-70 (1990).

151. J. R. D. McCormick, S. M. Fox, L. L. Smith, B. A. Bitler, J. Reichenthal, V. E. Origoni, W. H. Muller, R. Winterbottom, and A. P. Doerschuk, Studies of the reversible epimerization occurring in the tetracycline family. The preparation, properties and proof of structure of some 4-epi-tetracyclines, J. Am. Chem. Soc. 79, 2849-2858 (1957).

152. W. Naidong, S. Hua, E. Roets, R. Busson, and J. Hoogmartens, Investigation of keto-enoltautomerism and ionization of doxycycline in aqueous solutions, Int. J. Pharm. 96, 13-21 (1993).

153. D. W. Hughes, W. L. Wilson, A. G. Butterfield, and N. J. Pound, Stability of rolitetracycline in aqueous solution, J. Pharm. Phamacol. 26, 79-80 (1974).

154. A. G. Butterfield, D. W. Hughes, W. L. Wilson, and N. J. Pound, Simultaneous high-speed liquid chroma-tographic determination of tetracycline and rolitetracycline in rolitetracycline formulations, J. Pharm. Sci. 64, 316-320 (1975).

155. H. Ott, A. Hofmann, and A. J. Frey, Acid-catalyzed isomerization in the peptide part of ergot alkaloids, J. Am. Chem. Soc. 88, 1251-1256 (1966).

156. J. H. Beijnen, J. J. M. Holthuis, H. G. Kerkdijk, O. A. G. J. van derHouwen, A. C. A. Paalman, A. Bult, and W. J. M. Underberg, Degradation kinetics of etoposide in aqueous solution, Int. J. Pharm. 41, 169-178 (1988).

157. Y. Aso, Y. Hayashi, S. Yoshioka, Y. Takeda, Y. Kita, Y. Nishimura, and Y. Arata, Epimerization and hydrolysis of etoposide analogues in aqueous solution, Chern. Pharm. Bull. 37, 422-424 (1989).

158. L. C. Schroeter and T. Higuchi, A kinetic study of acid-catalyzed racemization of epinephrine, J. Am. Pharm. Assoc. 47, 426-430 (1958).

159. Y. Aso, S. Yoshioka, T. Shibazaki, and M. Uchiyama, The kinetics of theracemization of oxazepam in aqueous solution, Chem. Pharm. Bull. 36,1834-1840 (1988).

160. N. Hashimoto, T. Tasaki, and H. Tanaka, Degradation and epimerization kinetics of moxalactam in aqueous solution, J. Pharm. Sci. 73, 369-373 (1984).

161. N. Hashimoto and H. Tanaka, Epimerization kinetics of moxalactam, its derivatives, and carbenicillin in aqueous solution, J. Pharm. Sci. 74, 68-71 (1985).

162. T. Fujita, H. Kimoto, and A. Koshiro, Stability of disodium latamoxef in aqueous solution and in the admixtures of 5% glucose solution, Yukugaku Zasshi 106, 68-74 (1986).

163. A. Tsuji, Y. Itatani, and T. Yamana, Hydrolysis and epimerization kinetics of hetacillin in aqueous solution, J. Pharm. Sci. 66, 1004-1009 (1977).

164. P. A. Twomey, High-performance liquid chromatographic analysis of carbenicillin and its degradation products, J. Pharm. Sci. 70, 824-826 (1981).

165. Y. Aso, S. Yoshioka, and Y. Takeda, Epimerization and racemization of some chiral drugs in the presence of human serum albumin, Chem. Pharm. Bull. 38, 180-184 (1990).

166. T. Fujita and A. Koshiro, Kinetics and mechanism of the degradation and epimerization of sodium cefsulodin in aqueous solution, Chem. Pharm. Bull. 32, 3651-3661 (1984).

167. B. Vilanova, F. Munoz, J. Donoso, J. Frau, and F. G. Blanco, Alkaline hydrolysis of cefotaxime. A HPLC and 1H NMR study, J. Pharm. Sci. 83, 322-327 (1994).

168. N. Tanaka and M. Nakagaki, Physicochemical studies on the decomposition of ^-aminosalicylic acid and its salts. I. Effect of pH, and addition of propylene glycol, polyvinylpyrrolidone, and some surface-active agents on the decarboxylation ofp-aminosalicylic acid in the solution [in Japanese], Yakugaku Zasshi 81, 591-596 (1961).

169. H. Bundgaard and N. Mork, Kinetics of the decarboxylation of foscarnet in acidic aqueous solution and its implication in its oral absorption, Int. J. Pharm. 63, 213-218 (1990).

170. Y. J. Lee, J. Padula, and H. Lee, Kinetics and mechanisms of etodolac degradation in aqueous solutions, J. Pharm. Sci. 77, 81-86 (1988).

171. C. Jackson, T. A. Crabb, M. Gibson, R. Godgrey, R. Saunders, and D. E. Thurston, Studies on the stability of trimelamol, a carbinolamine-containing antitumor drug, J. Pharm. Sci. 80, 245-251 (1991).

172. C. M. Won, Kinetics of degradation of levothyroxine in aqueous solution and in solid state, Pharm. Res. 9, 131-137 (1992).

M. A. F. Hamelijnck, P. J. Stevenson, P. K. Kadaba, and L. A. Damani, Triazolines. XXI: Preformulation degradation kinetics and chemical stability of a novel triazoline anticonvulsant, J. Pharm. Sci. 81, 392-396 (1992).

T. Martens, D. Langevin-Bermond, and M. B. Fleury, Ditiocarb: Decomposition in aqueous solution and effect of the volatile product on its pharmacological use, J. Pharm. Sci. 82, 379-383 (1993). A. O. Dekker and R. G. Dickinson, Oxidation of ascorbic acid by oxygen with cupric ion as catalyst, J. Am. Chem. Soc. 62, 2165-2171(1940).

A. Weissberger, J. E. LuValle, and D. S. Thomas, Oxidation processes. XVI. The autoxidation of ascorbic acid, J. Am. Chem. Soc. 65,1934-1939 (1943).

M. M. T. Khan and A. E. Martell, Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. I. Cupric and ferric ion catalyzed oxidation, J. Am. Chem. Soc. 89, 4176-4185 (1967). M. M. T. Khan and A. E. Martell, Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. II. Cupric and femc chelate catalyzed oxidation, J. Am. Chem. Soc. 89, 7104-7111(1967). S. M. Blaug and B. Hajrahvala, Kinetics of aerobic oxidation of ascorbic acid, J. Pharm. Sci. 61,556-562 (1972).

R. J. Sassetti and H. H. Fudenberg, Alpha-methyldopa melanin. Synthesis and stabilization in vitro, Biochem. Phamacol. 20, 57-66 (1971).

T. D. Sokoloski and T. Higuchi, Kinetics of degradation in solution of epinephrine by molecular oxygen, J. Pharm. Sci. 51, 172-177 (1962).

R. K. Palsmeier, D. M. Radzik, and C. E. Lunte, Investigation of the degradation mechanism of 5-aminosali-cylic acid in aqueous solution, Pharm. Res. 9, 933-938(1992).

J. Jensen, C. Comett, C. E. Olsen, J. Tjornelund, and S. H. Hansen, Identification of major degradation products of 5-aminosalicylic acid formed in aqueous solutions and in pharmaceuticals, Int. J. Pharm. 88, 177-187 (1992).

T. M. Chen and L. Chafetz, Kinetics of procaterol auto-oxidation in buffered acid solutions, J. Pharm. Sci. 76, 703-706 (1987).

I. L. Doerr, I. Wempen, D. A. Clarke, and J. J. Fox, Thiation of nucleosides. III. Oxidation of 6-mercap-topurines, J. Org. Chem. 26, 3401-3409 (1961).

P. Timmins, I. M. Jackson, and Y. J. Wang, Factors affecting captopril stability in aqueous solution, Int. J. Pharm. 11, 329-336 (1982).

R. G. Strickley and B. D. Anderson, Solubilization and stabilization of an anti-HIV thiocarbamate, NSC 629243, for parenteral delivery, using extemporaneous emulsions, Pharm. Res. 10, 1076-1082 (1993). W. J. M. Underberg, Oxidative degradation of pharmaceutically important phenothiazines I: Isolation and identification of oxidation products of promethazine, J. Pharm. Sci. 67, 1128-1131 (1978). W. J. M. Underberg, Oxidative degradation of pharmaceutically important phenothiazines III: Kinetics and mechanism of promethazine oxidation, J. Pharm. Sci. 67, 1133-1138 (1978).

J. K. Guilloxy and T. Higuchi, Solid state stability of some crystalline vitamin A compounds, J. Pharm. Sci. 51, 100-105 (1962).

B. A. Stewart, S. L. Midland, and S. R. Byrn, Degradation of crystalline ergocalciferol [Vitamin D2 (3,5Z,22E)-9,10-secoergosta-5,7,10(19),22-tetraen-3-ol], J. Pharm. Sci. 73, 1322-1323 (1984).

L. T. Grady and K. D. Thakker, Stability of solid drugs: Degradation of ergocalciferol (vitamin D2) and cholecalciferol (vitamin D3) at high humidities and elevated temperatures, J. Pharm. Sci. 69, 1099-1102 (1980).

E. R. Garrett, Studies on the stability of fumagillin III. Thermal degradation in the presence and absence of air, J. Am. Pharm. Assoc., Sci. Ed. 43, 539-543 (1954).

J. E. Tingstad and E. R. Garrett, Studies on the stability of filipin I. Thermal degradation in the presence of air, J. Am. Pharm. Assoc., Sci. Ed. 49, 352-355 (1960).

G. B. Whitfield. T. D. Brock, A. Ammann, D. Gottlieb, and H. E. Carter, Filipin, an antifungal antibiotic: Isolation and properties, J. Am. Chem. Soc. 77, 4799-4801 (1955).

E. Pawelczyk and R. Wachowiak, Chemical characteristics of decay products of drugs. IV. Chemical mechanisms of the decay of phenylbutazone in pharmaceutical preparations, Acta Pol. Pharm. 26, 433-438 (1969).

D. V. C. Awang, A. Vincent, and F. Matsui, Pattern of phenylbutazone degradation, J. Pharm. Sci. 62, 1673-1676 (1973).

198. H. Fabre, B. Mandrou, and H. Eddine, Quality control of phenylbutazone II: Analysis of phenylbutazone and its decomposition products in drugs by high-pressure liquid chromatography, J. Pharm. Sci. 71, 120-122 (1982).

199. H. Fabre, N. Hussam-Eddine, D. Lerner, and B. Mandrou, Autoxidation and hydrolysis kinetics of the sodium salt of phenylbutazone in aqueous solution, J. Pharm. Sci. 73, 1709-1713 (1984).

200. S. Yoshioka, H. Ogata, T. Shibazaki, and A. Ejima, Stability of sulpyrine. III. Copper(II) ion catalyzed oxidation by molecular oxygen, Chem. Pharm. Bull. 26,2723-2728 (1978).

201. S. Yoshioka, H. Ogata, T. Shibazaki, and A. Ejima, Oxidative degradation of sulpyrine by molecular oxygen, Chem. Pharm. Bull. 312,81-86 (1979).

202. S. Yeh and J. L. Lach, Stability of morphine in aqueous solution III. Kinetics of morphine degradation in aqueous solution, J. Pharm. Sci. 50, 3542 (1961).

203. G. Boccardi, C. Deleuze, M. Gachon, G. Palmisano, and J. P. Vergnaud, Autoxidation of tetrazepam in tablets: Prediction of degradation impurities from the oxidative behavior in solution, J. Pharm. Sci. 81, 183-185 (1992).

204. I. H. Pitman, T. Higuchi, M. Alton, and R. Wiley, Deuterium isotope effects on degradation of hydrocortisone in aqueous solution, J. Pharm. Sci. 61, 818-820(1972).

205. D. E. Guttman and P. D. Meister, The kinetics of the base-catalyzed degradation of prednisolone, J. Am. Pharm. Assoc. 47, 773-778 (1958).

206. M. Ogata, R. Shimizu, and H. Abe, New degradation product of spiradoline mesylate in aqueous solution: Formation of an imidazolidine ring, J. Pharm. Sci. 82, 91-94 (1993).

207. K. Nord, J. Karlsen, and H. H. Tonnesen, Photochemical stability of biologically active compounds. IV. Photochemical degradation of chloroquine, Int. J. Pharm. 42, 11-18 (1991).

208. S. Kristensen, A. Grislingaas, J. V. Greenhill, T. Skjetne, J. Karlsen, and H. H. Tonnesen, Photochemical stability of biologically active compounds: V. Photochemical degradation of primaquine in an aqueous medium, Int. J. Pharm. 100, 15-23 (1993).

209. E. R. Garrett and T. E. Eble, Studies on the stability of fumagillin I. Photolytic degradation in alcohol solution, J. Am. Pharm. Assoc., Sci. Ed. 43, 385-390 (1954).

210. T. E. Eble and E. R. Garren, Studies on the stability of fumagillin II. Photolytic degradation of crystalline fumagillin, J. Am. Pharm. Assoc., Sci. Ed. 43, 536-538 (1954).

211. L. J. Ravin, L. Kennon, and J. V. Swintosky, A note on the photosensitivity of phenothiazine derivatives, J. Am. Pharm. Assoc., Sci. Ed. 47, 760 (1958).

212. I. A. Majeed, W. J. Murray, D. W. Newton, S. Othman, and W. A. Al-Turk, Spectrophotometric study of the photodecomposition kinetics of nifedipine, J. Pharm. Phamacol, 39, 1044-1046 (1987).

213. K. Thoma and R. Klimek, Untersuchungen zur Photoinstabilitat von Nifedipin 2. Mitt.: Einfluss von Milieubedingungen, Pharm. Ind. 47, 319-327 (1985).

214. G. S. Sadana and A. B. Ghogare, Mechanistic studies on photolytic degradation of nifedipine by use of H-NMR and C-NMR spectroscopy, Int. J. Pharm. 70, 195-199(1991).

215. G. E. Wright and T. Y. Tang, Photooxidation of reserpine, J. Pharm. Sci. 61, 299-300 (1972).

216. M. C. Bonferoni, G. Mellerio, P. Giunchedi, C. Caramella, and U. Conte, Photostability evaluation of nicardipine HC1 solutions, Int. J. Pharm. 80, 109-117 (1992).

217. A. L. Zanocco, L. Diaz, L. J. Nunez-Vergara, and J. A. Squella, Polarographic study of the photodecompo-sition of nimodipine, J. Pharm. Sci. 81, 920-924(1992).

218. M. Schiavi, S. Serafini, A. Italia, M. Villa, G. Fronza, and A. Selva, Identification of the major degradation products of 4-methoxy-2-(3-phenyI-2-propynyl)phenol formed by exposure to air and light, J. Pharm. Sci. 81, 812-814(1992).

219. F. Bosca, M. A. Miranda, and F. Vargas, Photochemistry of tiaprofenic acid, a nonsteroidal anti-inflammatory drug with phototoxic side effects, J. Pharm. Sci. 81, 181-182 (1992).

220. M. Hanamori, T. Mizuno, K. Akimoto, and H. Nakagawa, Photo-stability of the new antiplatelet agent, KBT-3022 (ethyl 2-[4,5-bis(4-methoxyphenyl)thiazole-2-yl]pyrrol- 1-ylacetate) in aqueous solutions containing acetonitrile, Chem. Pharm. Bull. 40, 3048-3051 (1992).

221. T. Mizuno, M. Hanamori, K. Akimoto, H. Nakagawa, and K. Arakawa, Wavelength dependency and mechanism of the photodegradation of ethyl 2-[4,5-bis(4-methoxyhenyl)thiazole-2-yl]pyrrol-1-ylacetate (KBT-3022) in solution, Chem. Pharm. Bull. 42, 160-162 (1994).

P. J. G. Comelissen, and G.M.J.B. Henegouwen, Photochemical decomposition of 1,4-benzodiazepines. Quantitative analyses of decomposed solutions of chlordiazepoxide and diazepam, Pharm. Weekbl. Sci. Ed. 2, 547-556 (1980).

H. H. Tonnesen and D. E. Moore, Photochemical stability of biologically active compounds. III. Mefloquine as a photosensitizer, Int. J. Pharm. 70, 95-101 (1991).

N. Yagi, H. Kenmotsu, H. Sekikawa, and M. Takada, Studies on the photolysis and hydrolysis of furosemide in aqueous solution, Chem. Pharm. Bull. 39, 454-457 (1991).

G. L. Mosher and J. McBee, Photoreactivity of LY277359 maleate, a5-hydroxytryptamine3 (5-HT3) receptor antagonist, in solution, Pharm. Res. 8, 1215-1222 (1991).

J. Philip and D. H. Szulczewski, Photolytic decomposition of N-(2,6-dichloro-m-tolyl)anthranilic acid (meclofenamic acid), J. Pharm. Sci. 62, 1479-1482(1973).

C. Lin, P. Pemer, G. G. Clay, P. A. Sutton, and S. R. Bym, Solid-state photooxidation of 21-cortisol tert-butylacetate to 21-cortisone tert-butylacetate, J. Org. Chem. 47,2978-2981 (1982).

H. Okada, V. Stella, J. Haslam, and N. Yata, Photolytic degradation of a-[(dibutylamino)methyl]-6,8-di-chloro-2-(30',4'-dichlorophenyl)-4-quinoline methanol: An experimental antimalarial, J. Pharm. Sci. 64, 1665-1667 (1975).

F. Vargas, C. Rivas, R. Machado, and Z. Sarabia, Photodegradation of benzydamine: Phototoxicity of an isolated photoproduct on erythrocytes, J. Pharm. Sci. 82, 371-372 (1993).

J. C. Vire, G. J. Patriarche, and G. D. Christian, Electrochemical study of the degradation of vitamins of the K group, Pharmazie 35, 209-212 (1980).

T. Higuchi and L. C. Schroeter, Kinetics and mechanism of formation of sulfonate from epinephrine and bisulfite, J. Am. Chem. Soc. 82, 1904-1907(1960).

G. B. Smith, L. M. Weinstock, F. E. Roberts, G. S. Brenner, A. M. Hoinowski, B. H. Arison, and A. W. Douglas, Kinetics of equilibration of bisulfite and dexamethasone-21-phosphate in aqueous solution, J. Pharm. Sci. 61, 708-716 (1972).

R. N. Duvall, K. T. Koshy, and J. W. Pyles, Comparison of reactivity of amphetamine, methamphetamine, and dimethylamphetamine with lactose and related compounds, J. Pharm. Sci. 54, 607-611 (1965). W. Wu, T. Chin, and J. L. Lach, Interaction of isoniazid with magnesium oxide and lactose, J. Pharm. Sci. 59, 1234-1242 (1970).

S. M. Blaug and W. Huang, Interaction of dextroamphetamine sulfate with spray-dried lactose, J. Pharm. Sci. 61, 1770-1775 (1972).

S. M. Blaug and W. Huang, Browning of dextrates in solid-solid mixtures containing dextroamphetamine sulfate, J. Pharm. Sci. 63, 1415-1418 (1974).

K. Kigazawa, N. Ikari, K. Ohkubo, H. Iimura, and S. Haga, Decomposition and stabilization of drugs. III. Reaction products of norphenylephrine with degradation products of sugars [in Japanese], Yakugaku Zasshi 93, 925-927 (1973).

S. Yoshioka, H. Ogata, T. Shibazaki, and A. Ejima, Stability of sulpyrine. IV. Reaction with glucose in aqueous solution, Chem. Pharm. Bull. 27, 907-915 (1979).

A. L. Jacobs, A. E. Dilatush, S. Weinstein, and J. J. Windheuser, Formation of acetylcodeine from aspirin and codeine, J. Pharm. Sci. 55, 893-895 (1966).

L. Liu and E. L. Parrott, Solid-state reaction between sulfadiazine and acetylsalicylic acid, J. Pharm. Sci. 80, 564-566 (1991).

K. T. Koshy, A. E. Troup, R. N. Duvall, R. C. Conwell, and L. L. Shankle, Acetylation of acetaminophen in tablet formulations containing aspirin, J. Pharm. Sci. 56, 1117-1121 (1967).

H. W. Jun, C. W. Whitworth, and L. A. Luzzi, Decomposition of aspirin in polyethylene glycols, J. Pharm. Sci. 61, 1160-1162 (1972).

C. W. Whitworth, H. W. Jun, and L. A. Luzzi, Stability of aspirin in liquid and semisolid bases I: Substituted and nonsubstituted polyethylene glycols, J. Pharm. Sci. 62, 1184-1185 (1973).

V. Kumar and G. S. Banker, Incompatibility of polyvinyl acetate phthalate with benzocaine: Isolation and characterization of 4-phthalimidobenzoic acid ethyl ester, Int. J. Pharm. 79, 61-65 (1992). K. A. Connors, Chemical Kinetics: The Study of Reaction Rates in Solution, 1st ed., VCH Publishers, New York, 1990.

W. N. Charman, L. E. McCrossin, N. L. Pochopin, and S. L. A. Munro, Study of the relative lactonization rates of pilocarpic acid and isopilocarpic acid in acidic media, Int. J. Pharm. 88, 397-404 (1992).

247. A. S. Kearney, S. C. Mehta, and G. W. Radebaugh, Aqueous stability and solubility of CI-988, a novel "dipeptoid" cholecystokinin-B receptor antagonist, Pharm. Res. 9, 1092-1095 (1992).

248. A. S. Kearney, S. C. Mehta, and G. W. Radebaugh, The effect of structural changes on the intramolecular degradation of the "dipeptoid" CI-988, Int. J. Pharm. 92, 63-70 (1993).

249. S. M. Blaug and J. W. Wesolowski, The stability of acetylsalicylic acid in suspension, J. Am. Pharm. Assoc., Sci. Ed. 48, 691-694 (1959).

250. M. Konishi, K. Hirai, and Y. Mori, Kinetics and mechanism of the equilibrium reaction of triazolam in aqueous solution, J. Pharm. Sci. 71, 1328-1334(1982).

251. M. B. Devani, C. J. Shishoo, K. J. Doshi, and H. B. Patel, Kinetic studies of the interaction between isoniazid and reducing sugars, J. Pharm. Sci. 74, 427-432 (1985).

252. T. Yamana, Y. Mizukami, A. Tsuji, and F. Ichimura, Studies on the stability of drugs. XX. Stability of benzothiadiazines.(1 1) Studies on the hydrolysis of hydrochlorothiazide in the various pH solutions [in Japanese], Yakugaku Zasshi 89,740-744 (1969).

253. J. A. Mollica, C. R. Rehm, J. B. Smith, and H. K. Govan, Hydrolysis of benzothiadiazines, J. Pharm. Sci. 60, 1380-1384 (1971).

254. S. Yoshioka, Y. Aso, T. Shibazaki, and M. Uchiyama, Stability of pilocarpine ophthalmic formulation, Chem. Pharm. Bull. 34, 4280-4286 (1986).

255. Y. Namiki, T. Tanabe, T. Kobayashi, J. Tanabe, Y. Okimura, S. Koda, and Y. Morimoto, Degradation kinetics and mechanisms of a new cephalosporin, cefixime, in aqueous solution, J. Pharm. Sci. 76, 208-214(1987).

256. M. Hara, H. Hayashi, T. Yoshida, and H. Murayama, Studies on the kinetics and mechanism of degradation of chlorphenesin carbamate in strongly alkaline aqueous solutions, Chem. Pharm. Bull. 34, 1764-1769 (1986).

257. Y. Matsuhisa, K. Umemoto, K. Itakura, and Y. Usui, Degradation kinetics of carumonam in aqueous solution, Chem. Pharm. Bull. 34, 3779-3790 (1986).

258. T. Yamana, Y. Mizukami, F. Ichimura, and H. Koike, Studies on the stability of drugs. XII. Stability of benzothiadiazines. (4). A simplified method for the calculation of rate constants of complicated reactions [in Japanese], Yakugaku Zasshi 84, 974-976 (1964).

259. R. Oliyai, L. Yuan, T. C. Dahl, S. Swaminathan, K. Wang, and W. A. Lee, Biexponential decomposition of a neuraminidase inhibitor prodrug (GS-4104) in aqueous solution, Pharm. Res. 15, 1300-1304 (1998).

260. H. Bundgaard, Polymerization of penicillins: Kinetics and mechanism of di- and polymerization of ampicillin in aqueous solution, Acta Pharm. Suec. 13, 9-26 (1976).

261. H. Bundgaard, Polymerization of penicillins. II. Kinetics and mechanism of dimerization and self-catalyzed hydrolysis of amoxycillin in aqueous solution, Acta Pharm. Suec. 14, 47-66 (1977).

262. H. Bundgaard, Polymerization of penicillins. III. Structural effects influencing rate of dimerization of amino-penicillins in aqueous solution, Acta Pharm. Suec. 14, 67-80 (1977).

263. E. Nakashima, A. Tsuji, M. Nakamura, and T. Yamana, Physicochemical properties of amphoteric ß-lactam antibiotics. IV. First- and second-order degradations of cefaclor and cefatrizine in aqueous solution and kinetic interpretation of the intestinal absorption and degradation of the concentrated antibiotics, Chem. Pharm. Bull. 33, 2098-2106 (1985).

264. K. A. Connors and J. A. Mollica, Theoretical analysis of comparative studies of complex formation, J. Pharm. Sci. 55, 772-780 (1966).

265. F. Sendo, C. M. Riley, and V. J. Stella, Kinetics of hydrolysis of fetindomide (NSC-373965), bis-N,N'-pheny-lalanyloxymethyl prodrug of mitindomide (NSC-284356); an unexpected catalytic effect of generated formaldehyde, Int. J. Pharm. 45, 207-216 (1988).

266. W. Jander, Reaktionen im festen Zustande bei hoheren Temperaturen, I. Reaktionsgeschwindigkeiten endotherm verlaufender Umsetzungen, Z. Anorg. Allg. Chem. 163, 1-30 (1927).

267. V. W. Jander and E. Hoffmann, Reaktionen im festen Zustande bei hoheren Temperaturen, Die Bestimmung von Reaktionsgeschwindigkeiten beiumsetzungen, die mit einer Gasabgave verbunden sind, Z. Anorg. Allg. Chem. 200, 245-256(1931).

268. E. G. Prout and F. C. Tompkins, The thermal decomposition of mercuric oxalate, Trans. Faraday Soc. 43, 148-157 (1947).

269. K. Okazaki, R. Nishigaki, and M. Hanano, Equation and accelerating factor of degradation in cocarboxylase free ester lyophilizate [in Japanese], Yakuzaigaku 49, 141-147 (1989).

K. Okazaki, R. Nishigaki, and M. Hanano, Relationship between degradation rate and relative humidity, temperature, or physical pretreatments of cocarboxylase free ester lyophilizate [in Japanese], Yakuzaigaku 50, 141-148 (1990).

M. Horioka, T. Aoyama, K. Takata, T. Maeda, and K. Shirahama, Degradation of propantheline bromide and dried aluminum hydroxide gel in powdered preparations, Yakuzaigaku 34, 16-21 (1974). S. Yoshioka, T. Shibazaki, and A. Ejima, Stability of solid dosage forms. I. Hydrolysis of meclofenoxate hydrochloride in the solid state, Chem. Pharm. Bull. 30, 3734-3741 (1982).

S. Yoshioka, T. Shibazaki, and A. Ejima, Stability of solid dosage forms. II. Hydrolysis of meclofenoxate hydrochloride in commercial tablets, Chem. Pharm. Bull. 31, 2513-2517 (1983).

S. Yoshioka and M. Uchiyama, Kinetics and mechanism of the solid-state decomposition of propantheline bromide, J. Pharm. Sci. 75, 92-96 (1986).

J. Hasegawa, M. Hanano, and S. Awazu, Decomposition of acetylsalicylic acid and its derivatives in solid state, Chem. Pharm. Bull. 23, 86-97 (1975).

E. G. Prout and F. C. Tompkins, The thermal decomposition of potassium permanganate, Trans. Faraday Soc. 40, 188-198 (1944).

J. T. Carstensen and F. Attarchi, Decomposition of aspirin in the solid state in the presence of limited amounts of moisture. III. Effect of temperature and a possible mechanism, J. Pharm. Sci. 77, 318-321 (1988). K. Kawakita, The kinetics of the reduction of ferric oxide, Rev. Phys. Chem. Jpn. 14, 79-85 (1940). M. Avrami, Kinetics of phase change. I. General theory, J. Chem. Phys. 7, 1103-1 112 (1939). M. Avrami, Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei, J. Chem. Phys. 8, 212-224 (1 940).

J. T. Carstensen and M. N. Musa, Decomposition of benzoic acid derivatives in solid state, J. Pharm. Sci. 61, 1112-1118 (1972).

J. T. Carstensen and R. C. Kothari, Decarboxylation kinetics of 5-(tetradecyloxy)-2-furoic acid, J. Pharm. Sci. 69, 123-124 (1980).

J. T. Carstensen and R. Kothari, Solid-state decomposition of alkoxyfuroic acids, J. Pharm. Sci. 70, 1095-1100 (1981).

J. T. Carstensen and R. C. Kothari, Solid-state decomposition of alkoxyfuroic acids in the presence of microcrystalline cellulose, J. Pharm. Sci. 72, 1149-1154 (1983).

L. J. Leeson and A. M. Mattocks, Decomposition of aspirin in the solid state, J. Am. Pharm. Assoc., Sci. Ed. 47, 329-333 (1958).

W. Yang and D. Brooke, Rate equation for solid state decomposition of aspirin in the presence of moisture, Int. J. Pharm. 11, 271-276 (1982).

J. T. Carstensen, F. Attarchi, and X. Hou, Decomposition of aspirin in the solid state in the presence of limited amounts of moisture, J. Pharm. Sci. 74, 741-745 (1985).

J. T. Carstensen and F. Attarchi, Decomposition of aspirin in the solid state in the presence of limited amounts of moisture. II. Kinetics and salting-in of aspirin in aqueous acetic acid solutions, J. Pharm. Sci. 77, 314-317 (1988).

S. Yoshioka, H. Ogata, T. Shibazaki, and A. Ejima, Stability of sulpyrine. V. Oxidation with molecular oxygen in the solid state, Chem. Pharm. Bull. 27, 2363-2371 (1979).

S. S. Komblum and B. J. Sciarrone, Decarboxylation of p-aminosalicylic acid in the solid state, J. Pharm. Sci. 53, 935-941 (1964).

J. T. Carstensen and P. Pothisiri, Decomposition of p-aminosalicylic acid in the solid state, J. Pharm. Sci. 64, 37-44 (1975).

N. Okusa, Prediction of stability of drugs. III. Application of Weibull probability paper to prediction of stability, Chem. Pharm. Bull. 23, 794-802 (1975).

H. Seki, T. Hayashi, and N. Okusa, An application of weighted least-squares analysis to Weibull probability paper for prediction of stability of drug products [in Japanese], Yakuzaigaku 40,201-207 (1980). K. C. Yeh, Kinetic parameter estimation by numerical algorithms and multiple liner regression: Theoretical, J. Pharm. Sci. 66,1688-1691 (1977).

S. A. Sande and J. Karlsen, Curve fitting of stability data by personal computer. Software in pharmaceutics II, Int. J. Pharm. 73, 147-156 (1991).

D. S. Kalonia and A. P. Simonelli, Analysis of consecutive pseudo-first-order reactions 11: Calculation of the rate constants from the co-product or co-reactant data, J. Pharm. Sci. 78,78-84 (1989).

297. K. Yamaoka, Y. Tanigawara, T. Nakagawa, and T. Uno, A pharmacokinetic analysis program (MULTI) for microcomputer, J. Pharmacobio-Dyn. 4, 879-885 (1981).

298. S. Arrhenius, Uber die Reactionsgeschwindigkeit bei der Inversion von Rohrzucker durch Sauren, Z. Phys. Chem. 4, 226-248 (1889).

299. H. Eyring, The activated complex in chemical reactions, J. Chem. Phys. 3, 107-1 15 (1935).

300. R. Brodersen, Inactivation of penicillin G by acids as a function of temperature, Acta Chem. Scand. 1, 403-414 (1947).

301. E. R. Garrett and R. F. Carper, Prediction of stability in pharmaceutical preparations I. Color stability in a liquid multisulfa preparations, J. Am. Pharm. Assoc., Sci. Ed. 44, 515-518 (1955).

302. E. R. Garrett, Prediction of stability in pharmaceutical preparations II. Vitamin stability in liquid multivitamin preparations, J. Am. Pharm. Assoc., Sci. Ed. 45, 171-178 (1956).

303. E. R. Garrett, Prediction of stability in pharmaceutical preparations III. Comparison of vitamin stabilities in different multivitamin preparations, J. Am. Pharm. Assoc., Sci. Ed. 45, 470-473 (1956).

304. J. T. Carstensen, Stability patterns of vitamin A in various pharmaceutical dosage forms, J. Pharm. Sci. 53, 839-840 (1964).

305. J. T. Carstensen, J. B. Johnson, W. Valentine, and J. J. Vance, Extrapolation of appearance of tablets and powders from accelerated storage tests, J. Pharm. Sci. 53, 1050-1054 (1964).

306. I. Horikoshi and S. Hata, Physicochemical studies on water contained in solid medicaments. VI. On the evaluating of the coloring rate of solid medicaments [in Japanese], Yakugaku Zasshi 86, 356-366 (1966).

307. R. Tardif, Reliability of accelerated storage tests to predict stability of vitamins (A, B1, C) in tablets, J. Pharm. Sci. 54, 281-284 (1965).

308. F. Matsui, D. L. Robertson, P. Lafontaine, H. Kolasinski, and E. G. Lovering, Stability studies of phenylbutazone and phenylbutazone-antacid oral formulations, J. Pharm. Sci. 67, 646-650 (1978).

309. M. Grit, W. J. M. Underberg, and D. J. A. Crommelin, Hydrolysis of saturated soybean phosphatidylcholine in aqueous liposome dispersions, J. Pharm. Sci. 82, 362-366 (1993).

310. J. T. Carstensen and T. Moms, Chemical stability of indomethacin in the solid amorphous and molten states, J. Pharm. Sci. 82, 657-659 (1993).

311. A. K. Kishore and J. B. Nagwekar, Influence of temperature and hydrophobic group-associated icebergs on the activation energy of drug decomposition and its implication in drug shelf-life prediction, Pharm. Res. 7, 730-735 (1990).

312. B. D. Anderson and R. T. Darrington, Letters to the editor, Pharm. Res. 8, 661 (1991).

313. J. B. Nagwekar, Letters to the editor, Pharm. Res. 8, 661-662(1991).

314. J. G. Slater, H. A. Stone, B. T. Palermo, and R. N. Duvall, Reliability of Arrhenius equation in predicting vitamin A stability in multivitamin tablets, J. Pharm. Sci. 68,49-52 (1979).

315. O. L. Davies and D. A. Budgett, Accelerated storage tests on pharmaceutical products: Effect of error structure of assay and errors in recorded temperature, J. Pharm. Pharmacol. 32, 155-159 (1980).

316. K. D. Ertel and J. T. Carstensen, Examination of a modified Arrhenius relationship for pharmaceutical stability prediction, Int. J. Pharm. 61,9-14 (1990).

317. D. L. Bentley, Statistical techniques in predicting thermal stability, J. Pharm. Sci. 59, 464-468 (1970).

318. J. T. Carstensen and K. S. E. Su, Statistical aspects of Arrhenius plotting, Bull. Parenteral Drug Assoc. 25, 287-302 (1971).

319. S. P. King, M. Kung, and H. Fung, Statistical prediction of drug stability based on nonlinear parameter estimation, J. Pharm. Sci. 73, 657-662(1984).

320. H. J. Borchardt and F. Daniels, The application of differential thermal analysis to the study of reaction kinetics, J. Am. Chem. Soc. 79,41-46 (1957).

321. R. E. Davis, Temperature as a variable during a kinetic experiment, J. Phys. Chem. 63, 307-309 (1959).

322. A. R. Rogers, An accelerated storage test with programmed temperature rise, J. Pharm. Pharmacol. 15, 101T-105T (1963).

323. S. P. Eriksen and H. Stelmach, Single step stability studies, J. Pharm. Sci. 54, 1029-1034 (1965).

324. B. R. Cole and L. Leadbeater, A critical assessment of an accelerated storage test, J. Pharm. Pharmacol. 18, 101-111 (1966).

325. J. T. Carstensen, A. Koff, and S. H. Rubin, Programmed kinetic studies, J. Pharm. Pharmacol. 20,485-486 (1968).

326. M. A. Zoglio, J. J. Windheuser, R. Vatti, H. V. Maulding, S. S. Komblum, A. Jacobs, and H. Hamot, Linear nonisothermal stability studies, J. Pharm. Sci. 57, 2080-2085 (1968).

H. V. Maulding and M. A. Zoglio, Flexible nonisothermal stability studies, J. Pharm. Sci. 59, 333-337(1970). M. A. Zoglio, H. V. Maulding, W. H. Streng, and W. C. Viicek, Nonisothermal kinetic studies III: Rapid nonisothermal-isothermal method for stability prediction, J. Pharm. Sci. 64, 1381-1383 (1975).

A. I. Kay and T. H. Simon, Use of an analog computer to simulate and interpret data obtained from linear nonisothermal stability studies, J. Pharm. Sci. 60, 205-208 (1971).

B. Edel and M. 0. Baltzer, Nonisothermal kinetics with programmed temperature steps, J. Pharm. Sci. 69, 287-290 (1980).

B. W. Madsen, R. A. Anderson, D. Herbison-Evans, and W. Sneddon, Integral approach to nonisothermal estimation of activation energies, J. Pharm. Sci. 63, 777-781 (1974).

I. G. Tucker and W. R. Owen, Estimation of all parameters from nonisothermal kinetic data, J. Pharm. Sci. 71, 969-974 (1982).

J. M. Hempenstall, W. J. Irwin, A. Li Wan Po, and A. H. Andrews, Nonisothermal kinetics using a microcomputer: A derivative approach to the prediction of the stability of penicillin formulations, J. Pharm. Sci. 72, 668-673 (1983).

S. Yoshioka, Y. Aso, and M. Uchiyama, Statistical evaluation ofnonisothermal prediction of drug stability, J. Pharm. Sci. 76, 794-798 (1987).

N. Okusa and K. Kinuno, Kinetic studies on prediction of stability of pharmaceuticals. 1. Kinetic analysis by a nonisothermal method [in Japanese], Yakuzaigaku 28, 17-20 (1968).

N. Okusa and K. Kinuno, Kinetic studies on prediction of stability of pharmaceuticals. 2. Prediction of stability of adenosine-triphosphate disodium powders by a nonisothermal method [in Japanese], Yakuzaigaku 28,23-26 (1968).

I. Utsumi, I. Sugimoto, M. Kobayashi, and M. Ohtsuka, Estimation of the stability of pharmaceutical by nonisothermal method [in Japanese], Yukuzaigaku 34, 173-179 (1974).

N. Okusa, Prediction of stability of drugs. Iv. Prediction of stability by multilevel nonisothermal method, Chem. Pharm. Bull. 23, 803-809 (1975).

J. Waltersson and P. Lundgren, Nonisothermal kinetics applied to drugs in pharmaceutical suspensions, Acta Pharm. Suec. 20, 145-154 (1983).

J. Waltersson and P. Lundgren, Nonisothermal kinetics applied to pharmaceuticals, Acta Phunn. Suec. 20, 145-154 (1983).

A. Li Wan Po, A. N. Elias, and W. J. Irwin, Non-isothermal and non-isopH kinetics in formulation studies, Acta Phunn. Suec. 20,277-286 (1983).

D. Kersten and B. Goeber, Auswertung nichtisothermer Stabilitatstests amBeispiel der Rohrzuckerinversion, Phamazie 39, 393-395 (1984).

D. Kersten and B. Goeber, Zur Auswertung nichtisothermer Kurzzeittests von Arzneistoffloesungen, Pharmazie 39, 541-546 (1984).

J. E. Kipp, M. M. Jensen, K. Kronholm, and M. McHalsky, Automated liquid chromatography for non-isothermal kinetic studies, Int. J. Pharm. 34, 1-8 (1986).

K. Inaba and J. Mizutani, Prediction of stability for prostaglandin E,-tt cyclodextrin complex [in Japanese], Yakuzaigaku 46, 58-62 (1986).

K. Ellstrom and H. Nyqvist, Non-isothermal stability testing of drug substances in the solid state, Acta Pharm. Sueu. 24, 115-122 (1987).

J. E. Kipp and J. J. Hlavaty, Nonisothermal stability assessment of stable pharmaceuticals: Testing of a clinamycin phosphate formulation, Pharm. Res. 8, 570-575 (1991).

S. Yoshioka, Y. Aso, and M. Uchiyama, Statistical evaluation of non-isothermal prediction of drug stability.

II. Experimental design for practical drug products, Int. J. Pharm. 46,121-132 (1988).

S. Yoshioka, Y. Aso, and Y. Takeda, Isothermal and nonisothermal kinetics in the stability prediction of vitamin A preparations, Pharm. Res. 7,388-391 (1990).

N. Hashimoto, T. Ichihashi, E. Yamamoto, K. Hirano, M. Inoue, H. Tanaka, and H. Yamada, Epimerization kinetics of moxalactam in frozen solution, Pharm. Res. 5, 266-271 (1988).

R. Shija, V. B. Sunderland, and C. McDonald, Alkaline hydrolysis of methyl, ethyl and n-propyl 4-hydroxy-benzoate esters in the liquid and frozen states, Int. J. Pharm. 80, 203-211 (1992).

C. McDonald, V. B. Sunderland, H. Lau, and R. Shija, The stability of amoxycillin sodium in normal saline and glucose (5%) solutions in the liquid and frozen states, J. Clin. Pharm. Ther. 14, 45-52 (1989).

E. Hayakawa, K. Sugiyama, K. Furuya, and T. Kuroda, Stability of mitomycin C and adriamycin in frozen state [in Japanese], Yukuzaigaku 49, 289-296 (1989).

354. R. Brodersen, Inactivation of penicillin G by acids—a reaction—kinetic investigation, Trans. Faraday Soc. 43, 351—355 (1947).

355. O. A. G. J. van der Houwen, J. H. Beijnen, A. Bult, and W. J. M. Underberg, A general approach to the interpretation of pH degradation profiles, Int. J. Pharm. 45, 181 — 188 (1988).

356. O. A. G. J. van der Houwen, 0. Bekers, J. H. Beijnen, A. Bult, and W. J. M. Underberg, A general approach to the interpretation of pH degradation profiles in the presence of ligands, Int. J. Pharm. 67, 155—162 (1991).

357. T. Loftsson, B. J. Olafsdottir, and J. Baldvinsdottir, Estramustine: Hydrolysis, solubilization, and stabilization in aqueous solutions, Int. J. Pharm. 79, 107—112 (1992).

358. C. M. Won and A. K. Iula, Kinetics of hydrolysis of diltiazem, Int. J. Pharm. 79, 183—190(1992).

359. D. M. Johnson, W. F. Taylor, G. F. Thompson, and R. A. Pritchard, Degradation of fenprostalene in aqueous solution, J. Pharm. Sci. 72, 946—948 (1983).

360. J. D. de Vries, J. Winkelhorst, W. J. M. Underberg, R. E. C. Henrar, and J. H. Beijnen, A systematic study on the chemical stability of the novel indoloquinone antitumour agent EO9, Int. J. Pharm. 1

Was this article helpful?

0 0
Drug Free Life

Drug Free Life

How To Beat Drugs And Be On Your Way To Full Recovery. In this book, you will learn all about: Background Info On Drugs, Psychological Treatments Statistics, Rehab, Hypnosis and Much MORE.

Get My Free Ebook


Post a comment