Better Growth And Disease Protection

Quit Marijuana The Complete Guide

New Treatment for Cannabis Dependence

Get Instant Access

Gardeners have an arsenal of friendly microbes they can use to protect their crops from pests and disease. These organisms use plant pests as their food source, but their diet does not include larger organisms so they are completely harmless to humans and animals. Many of these products are used to prevent disease rather than cure it. Their presence acts somewhat like a vaccine: they attack invading disease organisms without harming those that are helpful to plants. The organisms below are all registered for vegetable use and are a pure form of organics: using living organisms to keep other organisms under control. Bio-Plex (TM) is a liquid biostimulant consisting of vitamins, enzymes, hormones, micronutrients and growth regulators. It encourages root growth and plant vigor. Its combination of ingredients include a ferment of fish and kelp, cold processed kelp, humic acids, chelated iron and zinc, and a soil and tissue penetrant. The manufacturer claims that this is a superior product because the penetrant allows nutrients to be absorbed more easily and quickly by plants, making them more resistant to stress and disease, requiring less fertilizer, and creating an environment at the root level that encourages the growth of beneficial microbes. One gallon goes a long way and costs

$120 from Turf Chemicals Plus, Inc., 2213 Huber Dr., Manheim, PA 17545. Phone: (800)

441-3573.

Eco Sane (TM) is an "enzymic activated stabilized biologic catalyst." It promotes increased plant growth and yield, as well increased tolerance to stress, especially in cold conditions. It has increased production on many crops from 20 to 500 percent when used every 2 to 4 weeks. It works directly on the plant and also promotes beneficial microorganisms. Use one ounce in two or three gallons of water for every 1,000 sq. ft. One gallon is $42.50 from The EKMA (TM) Companies, POB 560186, Miami, FL 33256. Phone: (305) 256-5456. Fax: (305) 256-0689.

Maxicrop is a product made from ascophyllum nodosum, Norwegian kelp. Kelp contains large amounts of trace elements, as well as hormones, enzymes and sugars, which stimulate plant growth and health. In addition to working on the plant directly, kelp encourages beneficial microbial life. Supplementation with Maxicrop results in stronger plants more resistant to stress. The enzymes encourage stronger root growth and more vigorous leaf growth. The supplement is added to the water periodically. One gallon of liquid costs $16. Powder (10.7 oz.), which makes 1 gallon of liquid, costs $13. Available from Maxicrop, U.S.A., Inc., POB 964, Arlington Heights, IL 60006. Phone: (800) 535-7964. Web site:

www.maxicrop.com. Mycor Flower Saver (TM) is a mixture of four strains of vesicular-arbuscular mycorrhizal fungi and growth-promoting bacteria with organic biostimulants. The fungi develop a symbiotic relationship with the roots, providing them with nutrients in return for sugars produced by the plant. This relationship promotes faster growth and enhanced resistance to stress and pathogens. The dry powder is mixed into the medium at the rate of 3 lbs. per 100 sq. ft. at planting. It can be used indoors or out. A six-pound box costs $40 from Plant Health Care, Inc., 440 William Pitt Way, Pittsburg, PA 15238. Phone: (800) 421-9051.

Web site: www.planthealthcare.com. PHC Biopak (TM) is a biostimulant containing several strains of bacteria that live in symbiosis with the plant roots. PHC Biopak promotes fast root development (which increases plant growth and uptake of fertilizer), increases bioactivity in the medium and reduces plant susceptibility to disease. A one-pound jar costs $25 from Plant Health Care. PHC Healthy Start (TM) 3-4-3 is derived from bone, blood and kelp meal, rice bran and other natural fertilizers. The formula, 3-4-3, is a good mix for start-ups and clones as it promotes rooting. The natural ingredients provide complete micronutrients for soil and soilless media. What makes this blend truly unique is the addition of nitrogen and phosphorous-dissolving bacteria, which release nutrients to the roots as needed. Humic acid in the form of leonardite, a mined mineral, is added to encourage growth of beneficial microbes. As a result, plants require less fertilizer and are less likely to suffer from nutrient deficiencies. Twenty-five pounds treats about 250 sq. ft. One treatment per crop is needed, indoors or outdoors. A 25-lb. bag costs $15 from Plant Health Care.

RootShield is a biological fungicide that protects roots from pythium, rhizoctonia and fusarium—fungi that cause root and stem rot as well as die-off in seedlings and clones. The fungus in RootShield quickly forms a barrier against pathogens and attacks pathogens trying to break through. One application is all that is needed to "infect" the roots with this symbiotic organism, which feeds on nutrients secreted by the root system. RootShield comes as a dry powder that is mixed with water and applied as a drench at the rate of 6 oz. per cubic yard of medium or as a granular for dry-dipping cuttings. It is sometimes mixed into the planting medium at the rate of 1 lb. per cubic yard. The active ingredient is Trichoderma harzanum strain T-22, developed at Cornell University. It is recommended for vegetables and is non-toxic to humans, birds and other animals and safe to use around water sources. A one-pound bag costs about $37. It is not available from retailers but is sold by wholesalers, such as McCalif, (800) 234-4559. For other suppliers, contact the manufacturer, BioWorks, Inc. Phone: (800) 877-9443. Web site: www.bioworksbiocontrol.com.

Roots Transplant 1-STEP is an enhanced 2-2-2 transplanting fertilizer. In addition to nutrients it contains 13 species of mycorrhizae, which colonize the roots and develop symbiotic relationships with them. Together they increase fertilizer absorption, bioactivity and resistance to disease. In addition, the powder contains a biostimulant to promote root growth and a water-holding gel to increase water retention. One pound treats about 250 six inch or 125 ten inch containers. Treat plants every 2 to 4 weeks.

25 lbs. cost $23 from Roots Inc., 3120 Weatherford Rd., Independence, MO 64055.

Chapter Thirteen

Easy Organics

Organic indoor gardeners must choose between two growing methods: using either a hydroponic medium or a planting mix. Hydroponic gardeners use a medium such as clay pellets, foam rubber or spun rock, all of which are virtually nutrient-free, and add nutrients by using water-soluble fertilizers. Planting mixes can also be fed with water, but quite often they are composed of nutrient-rich ingredients. Each growing method has its advantages and disadvantages.

Gardens grown using planting mixes are more forgiving, because the ingredients and micro-organisms they host buffer the plants in extreme conditions. They are also generally easier to get started than hydroponic gardens and do not require a large investment of time or money. The hydroponic method, on the other hand, offers automated care, higher yield and faster growth.

The hydroponic method is particularly advantageous in large systems, where handwork can be very time-consuming. In smaller gardens, where hand-watering takes only a few minutes, automated systems may not save time, but they will eliminate the need for the gardener to be continuously on hand to water the plants.

The other advantage of hydroponics— higher yield—is alluring to the ganja-growing hobbyist. Hydroponic gardens are more finicky and react more intensely to change, like the Porsche as compared to the Toyota mentality of planting mixes. Planting-mix gardens are the way to go for growers who do not wish to become garden experts, but would like to grow an ample harvest of good bud.

Setting up the planting mix garden seen here is quite easy. if seeds are being used, each is planted in a single 2 inch to 4 inch container.

After a few weeks of growth, a branch is clipped from each one and marked. The clipped branches are kept in a jar with water and a few drops of houseplant fertilizer, then placed under a regimen of 10 hours of light and 14 hours of uninterrupted darkness. Within 7 to 10 days the plants will grow flowers, indicating whether they and their clone mothers are male or female. Remove and destroy the male plants.

This bud's stigmas scan the air for pollen. It is halfway on its journey to maturity.

Sexed seedlings and rooted clones are ready for the second stage. In this garden, 10 inch containers were filled with a high-quality planting mix recommended for all plants. This special mix is composed of 50 percent worm castings, peat moss and rock phosphate. This mix needs no fertilizers until forcing flowering, about a month after planting. Then high-phosphorous bat guano, such as 1-10-1 or 3-81, is added to the water at the rate of 1 tablespoon per 2 gallons (a cup per 30 gallons) with each watering. This garden is located in a 10 x 10 x 8 foot room built in a basement. The door leads to the aisle flanked by 4 x 8 foot trays on both sides. These trays were built from wood and then coated with epoxy for water resistance. Only one of the trays was used this time. This tray rests on several stacks of industrial pallets, about 30 inches above the floor. The tray has a drainage hole on one side and was installed at a 1:40 ratio slant, 2 inches over the 8 foot length, for fast water return. Twelve 10 inch, standard flowerpots (obtained used for free from a local garden shop), which hold 3 gallons of medium, are spaced evenly on the tray. The garden is illuminated by two 400 watt lamps, an HPS lamp and an MH lamp, in old-style vertical reflectors which were salvaged from one of the mysterious recesses in the basement. Thick Mylar sheets, purchased for pennies each at a flea market, are staple-gunned to the walls on three sides. On the fourth side, shutters (flea market cheap because of broken slats), also covered with Mylar, can be extended for reflectivity or closed for easy access to the garden.

Two 20 inch window fans hang from the ceiling at either end of the grow space. They are on constantly to circulate the air. A 50 lb. CO2

tank opens for about 30 seconds several times a day. This occurs whenever the garden's owner, the former First Mate, now Captain, happens by when the lights were on. The Captain was not planning to grow at all and this garden was unexpected. He tells it best: "I hadn't thought about starting this garden until a friend came over with a Christmas present of cute little clones and five bags of 'special' soil." The clones included Jack Herer, White Rhino, White Widow, Bob Marley, Skunk #1 and X-l0. "I generally discourage my friends from bringing live presents. But these rooted clones were so cute and very special, and they smelled good too, unlike a puppy, which is likely to smell poopy and entails a longer time commitment. I decided to take in these 24 orphans and give them a good home for a season. The 24 plants seemed like a lot for such a small space, so when a friend came over, I gave him 12 plants for his bare-looking empty space. He had helped me with my garden in the past, and we often share herb together." "I kept some Bob Marleys, the Jacks, and White Rhinos and gave my buddy the other plants. The gift included several bags of soil that the gifter read about in High Times and had tried. He said he found it to be the easiest system he had ever used. I took the clones, potted them in the soil mix and watered them. It was almost a week before they needed water again."

"I let the plants grow vegetatively under continuous light for six weeks, when they averaged about 18" tall. Then I pruned them and set the timer to 12 hours of light/12 darkness, and began using one cup of 3-8-1 bat guano in a 30 gallon reservoir. Each time I watered a plant it got about 1/2 gallon of water from a plastic jug. Actually, although I was advised to start fertilizing at forcing flowering, I

didn't start for the first 25 days of flowering. The plants were watered with this every four to six days, freeing up long weekends."

Stigmas start to dry and turn color as the bud enters the final stage of maturity.

"Seventy-five days after forcing, the plants were ripe. The Jacks and White Rhinos formed tight buds ranging from medium to large. They each had excellent distinctive odors, tastes and highs. I found that I used the Jacks during the day and the White Rhinos at night. The Bob Marleys were tall, gangly plants with loose buds that never matured properly. I gave most of that pot away. The garden yielded a little less than a pound. After tasting the Skunks and X-10s my friend grew, I decided to try some of them in my new grow since they both have great flavor and highs, too."

This bud is ready to pick. The stigmas have dried, false seed pods have swollen and all the gland heads are bulging with resin.

Chapter Fourteen

Pruning for Giant Yields

One of the easiest ways to improve the quality of your yield is by pruning plants so they produce fewer, but much bigger buds. The genetics of your plants and your goals for harvest should determine the type and style of the trim. Recently I observed a garden in which different trimming techniques were used, depending on when the plants were ready for harvest.

Here are both branched and manicured plants.

The gardeners determined that the plants did best when the garden held about four branches, or leads, per square foot. Regardless of how big the plants grew, the size of the containers, or the growing method used, this figure did not change. In previous gardens, the growers had used a variety of materials, including a mixture of vermiculite, perlite and potting mix; coated and uncoated horticultural clay pellets; and rich potting mix.

These plants in 12" containers were pruned back to six branches; each 10 days before forcing and then 15 days after. Each branch was twist-tied to a bamboo stake.

The new garden was filled with 10 inch black containers in two trays. One tray held 44 containers in 11 rows lined 4 deep, side to side. It was lit by four 600 watt horizontal HPS lamps. The 4 x 10 foot area was lined with white polyethylene plastic on three sides and Styrofoam boards, which were easily moved around, on the fourth. The other tray held 52 containers in 13 rows four deep. It was lit by five 600 watt HPS lamps, and was also surrounded by polyethylene and Styrofoam reflectors.

The planting mix was completely organic, consisting of 10 percent each peat moss and worm castings and 40 percent each vermiculite and perlite. Rock phosphate was added at roughly 1/2 tablespoon per container. The plants were placed in the containers as rooted clones about 6" high, with two or three sets of leaves. The original intent was to grow White Widow clones in their vegetative state under the four-light tray for about 10 days—

until the Soma Jack clones were ready for the five-light system. That way, the Widows would be 18" to 24" tall when they were placed into flowering, approximately 10 days after the

Jacks were planted. That plan fell through for two reasons. First, the Jack clones were not ready on time. Secondly, there was a great demand for the clones and the gardeners decided to keep the plants in vegetative growth for an extra 20 days while taking cuttings from the undergrowth. By the time the plants were forced to flower, the Widows had been in vegetative growth for a total of 40 days and the Jacks for 20. The plants were originally supported using bamboo stakes, but they grew too tall and heavy for them. The Widows were 3' tall when they were finally placed in flowering. At ripening, they had grown 3 1/2 foot long stems that supported only the top canopy and were between 5' and 6' tall. The bamboo was eventually replaced by 6 foot wood strips and plastic-coated metal stakes, both of which worked well. The stakes were pushed to the bottoms of the containers to maximize support. Then the plants were tied to them using 8 inch paper-coated twist ties commonly used in nurseries.

The plants were pruned three times, at intervals of 10 to 15 days, before they were forced into flowering. Rather than cutting the tops and causing the plants to branch more, the lower growth Pruning For Giant Yields 87 was removed. Then, at forcing and again about two weeks after, all but six main branches were cut off. With the staking and removal of extraneous vegetation, each lead had direct access to light and adequate growing space. The growers experimented with fertilizers to determine which one worked best during vegetative growth. The White Widows received

Miracle Gro, (N-P-K ration 18-18-21) fish emulsion, (5-2-2) and Wonder Grow, a methanol-containing fertilizer which is unregistered but traded underground by orchid growers. During the flowering cycle the plants received Wonder Bloom, Miracle Gro (15-3015) and Fish Emulsion Bone Meal (0-12-0). The fertilizers that performed best on this system were the fish emulsion and Fish Emulsion Bone Meal. The Wonder Grow produced the worst results and actually caused visible burning of the leaves. All of the fertilizers were measured to an electrical conductivity of 10001. The Jacks received different fertilizers: Bill's Perfect Fertilizer (65-11-5), General Hydro (5-5-6) and Max Sea (16-16-16 vegetative, 3-20-20 bloom). With these plants, the differences were visible but less striking. Bill's Perfect Fertilizer produced the tightest buds and the highest yield. The containers were fed by hand as needed, usually every three to five days. Need was determined by feeling the planting mix 2" below the surface in several containers. If it felt moist it was not watered, based on the assumption that there was more moisture in the bottom third of the container than in the top. Only when the top of the container was dry was it ready to be watered. Watering was accomplished using a two-quart water pitcher. It was filled from a five-gallon bucket of water-nutrient solution, then poured into the plant container.

In each garden the lights were evenly spaced, averaging 60 watts input per foot squared for the Widows and 57.7 for the Jacks. The horizontal HPS lamps were screwed into Hydrofarm reflectors, which are very efficient. The lamps were hooked to a 2 x 4 inch board that was bolted to the ceiling. The lamps had a

V holder on either side, ending in an S hook. The S hooks on either side of the lamp were moved up or down the chain to raise or lower the light.

The reflectors were stationary, but with the close spacing of the lamps and the 2 foot distance between the top of the canopy and the bottom of the bulbs, light from the lamps crossed quite a bit. Also any light which hit the white Styrofoam or polyethylene plastic was reflected back to the garden. There was enough room between the evenly spaced leads for light to penetrate a foot or more down from the top of the canopy. CO2 was provided using a CO2 generator. It was kept at 1,600 parts per million using an online meter connected directly to the generator. The generator created a lot of heat and some moisture in the room. A humidistat set at 60 percent humidity drew excess humidity from the room.

The nine lights and a CO2 generator produced a lot of excess heat: 3,200 BTUs per 1,000 watts. About 17,300 BTUs were created by the lights and an average of 2,200 by the generator. The temperature would quickly rise to 90-100 degrees Fahrenheit on a 70 degree day. On a 90 degree day the room temperature would climb to 110 degrees.

To prevent an extreme heat scenario, the room was cooled using an external air-conditioner that pulled in cool air from a ceiling vent. This system was not completely effective. The gardeners complained that they were lured to purchase a 'bargain,' a used furnace/air-conditioner that proved to be unreliable. Internal air circulation was provided by an overhead fan, several window fans mounted from the ceiling and two turbo fans placed close to each other on the floor blowing air up to the ceiling. One improvement the gardeners suggested was to use enclosed, ventilated, reflectors with fans to prevent heat buildup in the room. This would reduce the need for air conditioning. The nine light ballasts were kept in a separate space, a closet with a small vent fan to move the heat from the ballasts to the attic.

Three weeks after forcing, new branch growth tapers off. The plant puts all of its energy into reproduction, producing clusters of flowers all along the branches. As long as they remain unpollinated, the clusters continue to grow. The clusters often link up, forming a solid bud consisting of the female flowers' stigmas, to which any floating pollen will adhere. Since these plants were all female, there was no stray pollen, so all of the flowers remained unpollinated. The Jacks in the larger tray had a different experience than their neighbors across the aisle. They were placed into the garden 20 days later and received only two 'haircuts', one at forcing and the other three weeks into flowering. They were only 15" to 18" tall at flowering and matured at under three feet. At the first trimming, all but three to five leads were removed. The plants were staked and tied to hold the leads in position. The second trim removed branches that had grown since forcing. These cuttings were also cloned, but took an extra three weeks to revert from flowering to vegetative growth. They were not ready to transplant until five weeks from cutting.

A lot of hard work goes into pruning and staking plants, but it results in bigger, higher grade buds that require less manicuring.

The pruning given these plants at forcing and two or three weeks later is similar to the ones wine grapevines and fruit trees undergo. All branches extraneous to the plants' needs were removed. Before the final pruning a plant might have 16 or 20 branches; after it, only four or five branches remained. These were chosen for best development, spacing and diameter. The small branches and buds under the canopy were clipped, along with less-developed branches. Buds under the canopy are small, don't mature well and take energy from the upper buds. The top buds weighed a little more than 8 lbs—a disappointing return. This was attributed to improper use of the CO2 unit and the malfunctioning air conditioning unit.

This fresh, dried bud has all of its glands sticking out.

1EC is a rough approximation of the parts per million of total dissolved solids in the water. To start, the water in this garden had an EC ranging from about 80-125, which is considered fair. When water has an EC of 200 or more the dissolved solids may start affecting plant growth.

Chapter Fifteen

Harvest Tips

Whether you are growing indoors or out, the anticipation of harvest starts about three weeks before the plant is ripe. The buds are in the home stretch. Every day they are a little closer to ripeness, but not quite there. By this time the buds have almost finished growing. Although a few more flowers will appear, the major change will be in appearance, from a young bud with thousands of tender stigmas vainly searching the air for pollen grains, to a mature bud.

At the start, the stigmas are a pale, translucent color, white or cream, sometimes tinged pink or purple. When they catch the light, the translucent stigmas glow. These structures begin to dry out by the time the bud is ripe, they will turn orange, red or purple. The ovaries behind them will swell and seem to absorb the stigmas. The glands develop taller structures and stand erect from the tissue. Precursors are manufactured into THC on the inner surface of the membrane. As ThC builds up in the gland, its shape changes. The thin stalk, which holds the head, swells and strains the membrane. The gland begins to look like a mushroom. Using a photographer's loupe, you can get a better look at the bud and its glands. If the gland head membrane looks like it could be stretched, the bud still has a way to go before ripening. If the gland head membrane looks taut, like a filled balloon, the bud is probably ready. When the glands look clear, the THC is still accumulating. When they start to turn cloudy, the THC is deteriorating to cannibinol, which is only one-tenth as psychoactive as

THC.

Indoors, plants are certain to receive light and moderate temperature. Their maturation adheres to a fairly rigid schedule. Outdoors, bud growth is subject to the vagaries of the weather.

The size and development of the bud, its maturity and ripening time are all dependent on the environment. This is one reason why all farmers throw the dice each time they plant. For marijuana growers, the stakes are higher; tomato farmers rarely worry about thieves or bullies in blue. Despite the gamble, hundreds of thousands of ganja gardeners harvest beautiful plants each Autumn.

No matter how big the plants are, the initiation of flowering and the maturation date are determined by the number of hours of uninterrupted darkness they receive each night. Any interruption of the dark period results in delayed flowering and may affect the bud's growth pattern, making them lanky. Plants use red light to measure day length.

This is most relevant to people in urban areas, who might consider growing near a street or outdoor light. Gardeners who wish to examine their plants at night should also be concerned. Most of a flashlight's light is the yellow, orange and red spectra. Even fluorescent ones emit some red light. The solution is to place a green filter over the light source, as plants are not sensitive to this color. If you are gardening out in the woods at night, a green flashlight is an essential tool. It gives you sight, but is unobtrusive, hard to see from a distance and blends into the background. A green filter can easily be made from a stage-light filter, or, more conveniently, from four or five layers of green plastic from an appropriately sized pop bottle. Choose a size that slides over the flashlight top, but is not too loose. Cut the bottle about four inches from the bottom. Then cut four pieces from the side of the bottle. These should be small enough to fit inside the pop bottle bottom. Slide the bottle bottom with the extra green pieces in it over the flashlight and tape it on. Plants in the South, which have shorter days throughout the summer and fall than the North, mature earlier. Plants grown at high altitudes mature faster than those in the valley. Varieties also differ in maturation dates, and the buds exposed to the most light grow larger and mature faster. Buds grown in the shade don't reach their full potential. In very shady locations they may never fully mature. Marijuana buds grow fat fat and juicy under an intense sun. How ironic that they flower just as the suns strength wanes in the fall. Every sunny day speeds the plant to maturity. Overcast days do nothing. The plant just sits there, in suspended animation, waiting for some ripening energy. The worst are the cool rainy days, which promote mold and fungi. A season's efforts can be spoiled in hours. Beautiful buds are turned to mush; white or gray molds are visible or turn brown and crumble when touched.

Outdoors, gardeners often face hard choices. The buds are a few sunny days from harvest, but the weather predictions are for rain and overcast days for the next week. Neighbor's kids have already clipped a few immature buds from the plants. Helicopters are active in the next valley. Hunting season begins next week. That's why a lot of outdoor bud out there is often slightly immature.

Harvesting situations vary a lot. Guerrilla growers who often make incursions into parks or other people's property must work quickly and efficiently with no time wasted. Although it is a joyous moment, it may also be a time of extreme vulnerability, with valuable contraband and no good excuses. These people should quickly cut all the branches with buds, stuff them into a knapsack or bag, and leave the scene as quickly as possible. The proper tools make the job easier. Make sure to have a high-quality clipper. For example, I viewed a 1,000 square meter greenhouse in Holland, where seven foot plants were harvested with the help of a hedge pruner. As on most naturally growing plants, there were branches on four sides. Starting from the top, the pruner clipped through one line in a few seconds. The branches fell in a neat pile. Then the other three sides were harvested. When the plants were lined up by the growing tip, it was easily seen that each branch had the same amount of foliage. The longer branches just had more bare area where they had all been hidden by from the light by the canopy. Guerrilla growers who have a space or weight problem in their knapsack or bag should consider this. By lining the branches up, they can easily eliminate a good part of the bulk. Backyard and indoor gardeners who do not feel threatened may wish to harvest on a bud-by-bud basis, cutting them only as they mature. The outside buds mature first. When they are removed, it opens the inner buds to light, giving them energy to grow and mature. Larger plants are more likely to mature in stages. Smaller plants usually mature uniformly. Once the branches have been harvested, they should be hung to dry. This should be in a space with dim light, constant air circulation, low humidity and temperature no higher than the low 70s. This allows the buds to cure a bit before they dry. The curing, which should last two or three days, creates a smoother smoke. After the buds have dried for a few days, it is time to increase the drying speed by raising the temperature to the low 80s. The buds will dry within a day or two. There are many opinions about the best time to manicure. When the plants are left unmanicured until they dry, they dry slower and keep the room humid because of all the extra leaf. However, manicuring dried marijuana is faster than working with wet material. Some gardeners remove only the fan leaves and work on the smaller trim leaves after drying. The fan leaves are simply pulled down. They break easily from the stem. This is very fast and speeds up drying. However, one connoisseur told me he thought this interfered with the curing, hastening it. Whether manicuring wet or dry, growers gravitate to either scissors or hands. The correct method is the one you like, that feels comfortable and results in efficient bud processing. Scissors make a big difference. Find a pair that is not tiring, is sharp and helps with precision work. Professional growers gravitate to small scissors with springs, so they need only push them closed, not pull them open. There are also some other tools you may want to use. A small garden's yield can be dried in a closet, basement, spare room or attic. To minimize odor, use a negative-ion generator or two, or an ozone generator. Chemical odor neutralizers are available at some indoor garden shops. Dehumidifiers remove moisture from air and add heat. Room air conditioners also remove humidity. Fans keep the air circulating.

Chapter Sixteen

Regeneration

When restarting a garden, marijuana growers often believe that they are limited to choosing between seeds or clones.

Seeds present many disadvantages to the indoor gardener. Approximately half of the plants will be male, and the final results are uncertain. Using seeds gives growers more control over evolution and selection, but indoor growers often cannot devote time and space to plants that may have quite different habits in growth, flowering time, or yield. Clones offer the advantage of uniform genetics. They will grow in the same way, ripen at the same time and have the same taste and potency. The problems with clones are that they can be decidedly tedious to prepare and are subject to heavy failure rates. Taking clones from different varieties at the same time can be frustrating—they grow at different rates yet all must be closely monitored. Additionally, taking clones from clones from clones may cause the plants to suffer from 'genetic drift,' a result of mutations, which constantly occur in living organisms.

This is a garden of regenerates.

There is a third way to restart your garden: regeneration. Regeneration is faster, easier and requires less labor than cloning or starting with seeds. Yields also tend to be greater since regenerated plants have much of their infrastructure intact, including the root system and part of the stem. Everyone has probably pruned a plant at some time. Within a few weeks, new leaves, stems and branches appear. Marijuana gardeners can do the same thing with their plants. Plants that have already been harvested and are known to be high-yield females can be forced back into the vegetative cycle and then into flowering.

A small leaf with growing tip was left on the lower stem of this plant after harvest.

The regeneration process begins at harvest. There is no seed preparation or cutting required and no planting or repotting involved. Rather than cutting the whole plant down at the stem, you leave it intact with a few branches. Each of these branches will sprout many small branches with leaves. As a result, regenerated plants tend to be bushier, with more, smaller buds than clones or seed plants.

Remove the other branches at the stem. Leaves should be left on the branches you choose to keep. Leaves will grow more quickly, dramatically increasing the plants' chance of survival. Gardeners who wish to grow single-stem plants should remove all but one branch or leaf site on the stem and remove other leaf sites. All of the plants' energy will focus on this remaining growth sites.

This close-up shows new growth on a cut stem. In order to regenerate, some vegetation and growing tips must be left on the plant.

Once the plants are pruned, the lights should be left on continuously. The plants will switch to the vegetative cycle and start to grow in about 10 days. They can be forced to flower when they reach the desired size.

Left unpruned, dozens of branches grow from an old stalk at the regenration point.

Left unpruned, dozens of branches grow from an old stalk at the regenration point.

Most people practice regeneration only once or twice and then start again with new plants. One popular method is to harvest an indoor plant and then place it outdoors in the spring. The plant regenerates and produces a fall harvest. In wanner climates you can place plants outdoors for a winter or spring harvest and then let them regenerate. One woman who wrote me claimed to have a four-year-old plant that had flowered and regenerated a number of times both outdoors and indoors. One spring she said she cut it back to make clones and left it on the porch. When she returned from a month-long trip, the plant had grown into a 3 foot wide bush.

I do have some concern about growth rate when the roots are pot-bound or make up a very large mass in a hydroponic system. It might be better to trim them as well to encourage new growth. If this were helpful, it would only be done following the second or third harvest.

After harvesting, the light is left on continuously to force the plants back into vegetative growth.

There are other advantages to regeneration. Federal sentencing guidelines are determined by the total number of plants seized. Using sea-of-green methods, which produce short, dense plants and colas, seed and clone growers usually grow between one plant every two square feet and four plants per square foot, although a few growers space the plants as densely as nine per square foot. Regenerated plants already have complete infrastructures, so they can be fairly sizeable, without taking up a lot of time in vegetative growth. Fewer plants, regardless of size, will usually result in lighter sentences if you're unfortunate enough to be arrested after the second or third harvest.

Chapter Seventeen

Going Male

Why would a grower want a potion that makes female marijuana plants develop male flowers? These male flowers, hormonally produced, would contain no Y-chromosomes, the ones that make plants male. All plants fertilized by pollen from these plants would be female.

A close-up of this female branch shows clusters of male as well as female flowers.

Breeders would appreciate a method of creating female x female crosses. Think about it. Growers spend inordinate amounts of time choosing the best females to seed and then pick a male without too much consideration. The parameters for selecting the male are somewhat limited, because many of the characteristics being selected for are more pronounced in the female. If a reliable method of inducing male flowers on a female plant existed, breeders would never have to face that dilemma. Such a method does exist—using gibberellic acid.

This female branch turned hermaphrodite from gibberellic spray.

Just as in primate societies, marijuana males create havoc in the marijuana garden. Think how peaceful a garden would be without the unwanted seeds created by stray males. In Holland I met a fellow who grew large amounts of marijuana in a greenhouse. He said that the way he spotted males was by standing on a tower and looking at the garden with binoculars. If a certain plant showed signs of turning male or hermaphroditic, the surrounding females would all turn to face it. Unfortunately, by the time this occurred, some of their buds could already be pollinated. One male can spoil a good thing. They just have no respect for a grower's sinsemilla desires. What every grower needs is the peacefulness and tranquility of an all-female society, where there are no 'unplanned events.'

Seeds from female-to-female crosses have absolutely no maleness in them to spoil a good season.

Was this article helpful?

0 0
100 Gardening Tips

100 Gardening Tips

100 Gardening Tips EVERY Gardening Enthusiast Should Know!

Get My Free Ebook


Post a comment