Bioactive Molecules of Medicinal Plants

101 Toxic Food Ingredients

101 Toxic Food Ingredients

Get Instant Access

Plant cells produce two types of metabolites. Primary metabolites are involved directly in growth and metabolism, viz. carbohydrates, lipids and proteins. Primary metabolites are produced as a result of photosynthesis and are additionally involved in cell component synthesis. Most natural products are compounds derived from primary metabolites such as amino acids, carbohydrates and fatty acids and are generally categorized as secondary metabolites. Secondary metabolites are considered products of primary metabolism and are generally not involved in metabolic activity viz. alkaloids, phenolics, essential oils and terpenes, sterols, flavonoids, lignins, tannins, etc. These secondary metabolites are the major source of pharmaceuticals, food additives, fragrances and pesticides [4, 6, 32, 33].

In general, primary metabolites obtained from higher plants for commercial use are high-volume, low-value bulk chemicals. They are primarily used as industrial raw materials, foods or food additives such as vegetable oils, carbohydrates (sucrose, starch, pectin and cellulose) and proteins. It is the medicinal plants that are rich in secondary plant products, and it is because of these compounds that these are termed 'medicinal' or 'officinal' plants. These secondary metabolites exert a profound physiological effect on mammalian systems; thus they are known as the active principle of plants. With the discovery of the physiological effect of a particular plant, efforts are being made to know the exact chemical nature of these drugs (called active principle) and, subsequently, to obtain these compounds by chemical synthesis [4].

Here we present a brief account of physiologically active primary and secondary metabolites, and more prominent compounds belonging to the alkaloid, terpenoid and phenolic groups. This will provide readers an overview of the biosynthesis, diversity and distribution of such compounds.

Besides secondary plant products, several primary metabolites exert strong physiological effects. In this category, proteins are the principal compounds having such diverse functions as blood agglutinants from Fabaceae, hormones (e.g. insulin), various snake venom poisons, ricin from Ricinus communis, and abrine and precatorine from Abrus precatorius. Other examples of primary metabolites exerting a strong physiological effect include certain antibiotics, vaccines and several polysaccha-rides acting as hormones or elicitors [34, 35].

The carbon skeleton of all the compounds are derived from carbohydrates synthesized by photosynthesis. The synthesis of various classes of secondary metabolites from primary metabolites is presented in schematic form in Fig. 2.1. The majority r

Pentose phosphate pathway

Shikimic acid pathway

Aromatic amino acids


Glycolysis i

Pyruvic acid-

Complex polysaccharides e.g., cell wall

Malonic acid pathway

Phenylpropanoid "

pathway Nitrogen containing

DOX/MEP Mevalonic acid Malonyl CoA pathway pathway


Phenolic compounds e.g., alkaloids

Secondary metabolites Terpenoid Phospholipis



Fig. 2.1 Principal biosynthetic pathways leading to synthesis of secondary metabolites of secondary metabolites are synthesized via two principal biosynthetic pathways: (1) shikimic acid pathway producing a pool of aromatic amino acids, which in turn are converted into diverse compounds such as phenolics (lignins, tannins, quinones) and alkaloids [36], and (2) acetyl-CoA mevalonic acid pathway, leading to a vast array of terpenoids [37].

Was this article helpful?

0 0
You Are What You Eat

You Are What You Eat

Nutrition is a matter that people spend their careers learning about and requires volumes of books to explain. My objective is to instruct you how to consume a healthy nutritional diet that aids your body in burning off fat instead of storing it. You do not require overwhelming science to get this.

Get My Free Ebook

Post a comment