Acknowledgments

Quit Marijuana The Complete Guide

New Treatment for Cannabis Dependence

Get Instant Access

Supported by grants from National Institutes on Drug Abuse (DA9158, DA03801, and DA07215).

Scheme 17. Synthesis of tail-modified analog 73 (95). Reagents and conditions: (a) I2, PPh3, imidazole, Et2O/CH3CN, 0 to 23°C, 1 h, 98%; (b) PPh3, CH3CN, reflux, 18 h, 90%; (c) NaHMDS, THF/HMPA, 80, -78 to 23°C, 2 h, 61%; (d) LiOH, MeOH/H2O, 23°C, 18 h, 94%; (e) oxalyl chloride, CH2Cl2, 0°C, 2 h, 100%; (f) 2-ethanolamine, CH2Cl2, 0 to 23°C.

Methyl 14-triphenylphosphoniotetradeca-(all-d,s)-5,8,11-trienoate iodide (79). To a stirred solution of triphenylphosphine (456 mg, 1.74 mmol) and imidazole (118 mg, 1.74 mmol) in Et2O:CH3CN 5:1.7, cooled to 0°C, I2 was added (441 mg, 1.74 mmol) in several portions. The resulting slurry was warmed to 25°C and stirred for 20 min. It was again cooled to 0°C, and the alcohol 78 was added slowly. The mixture was warmed to 25°C after the addition and stirred for 1 h. It was diluted with pentane:ether 80:40 and filtered through a pad of silica gel to yield the iodide as a colorless oil (562 mg, 98%). A solution of triphenylphosphine (2.25 g, 8.6 mmol) and the above iodide (2.83 g, 7.82 mmol) in acetonitrile (50 mL) was refluxed overnight. The solvent was removed under reduced pressure, and the oily residue was purified by washing and decanting with 80 mL of hexanes:benzene 50:50. The solvent was removed and the oily residue was heated in a vacuum oven overnight at 60°C to yield 79 as a yellow gum (90%), which was used in the subsequent step without further purification.

16,16-Dimethyldocosa-5,8,11,14-(all-aX)-tetraenoic acid methyl ester (81). To a stirred solution of the phosphonium salt 79 (686 mg, 1.1 mmol) in THF:hexam-ethylphosphoramide (HMPA) 6:1 cooled to -10°C was added dropwise a 1 M solution of NaHMDS in THF (1.1 mL). The mixture was stirred at 0°C for 30 min and cooled to -78°C. The aldehyde 80 (171 mg, 1.1 mmol) (88) was added dropwise in THF (1.5 mL) to the reaction mixture. The cooling bath was removed and left to warm to 25°C over 2 h. It was quenched with hexanes, and the mixture was filtered through a pad of silica gel (ethyl acetate:hexanes 20:80). The filtrate was dried over MgSO4, and the solvent was removed under reduced pressure. The oily residue was purified by flash chromatography (EtOAc:hexanes 3:97) to yield the tetraene 81 as a colorless oil (0.25 g, 61%).

References

1. Gaoni, Y. and Mechoulam, R. (1964) Hashish. III. Isolation, structure, and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc. 86, 1646-1647.

2. Razdan, R. K. (1986). Structure-activity relationships in cannabinoids. Pharmacol. Rev. 38, 75-149.

3. Makriyannis, A. and Rapaka, R. S. (1990) The molecular basis of cannabinoid activity. Life Sci. 47, 2173-2184.

4. Mechoulam, R., Devane, W. A., and Glaser, R. (1999) Cannabinoid geometry and biological activity, in Marijuana and Medicine (Nahas, G. G., Sutin, K. M., and Agurell, S., eds.), Humana Press, Totowa, NJ, pp. 65-90.

5. Khanolkar, A. D., Palmer, S. L., and Makriyannis, A. (2000) Molecular probes for the cannabinoid receptors. Chem. Phys. Lipids 108, 37-52.

6. Palmer, S. L., Thakur, G. A,. and Makriyannis, A. (2002) Cannabinergic ligands. Chem. Phys. Lipids 121, 3-19.

7.Goutopoulos, A. and Makriyannis, A. (2002) From cannabis to cannabinergics: new therapeutic opportunities. Pharmacol. Ther. 95, 103-117.

8.Makriyannis, A. and Goutopoulos, A. (2004) Cannabinergics: old and new therapeutic possibilities, in Drug Discovery Strategies and Methods (Makriyannis, A. and Biegel, D., eds.), Marcel Dekker, Inc., New York, pp. 89-128.

9.Petrzilka, T., Haefliger, W., and Sikemeier, C. (1969) Synthesis of hashish components. IV. Helv. Chim. Acta 52, 1102-1134.

10. Razdan, R. K., Dalzell, H. C., and Handrick, G. R. (1974) Hashish. X. Simple one-step synthesis of (-)-A1-tetrahydrocannabinol (THC) from p-mentha-2,8-dien-1-ol and olivetol. J. Am. Chem. Soc. 96, 5860-5865.

11. Crombie, L., Crombie, W. M. L., Jamieson, S. V., and Palmer, C. J. (1988) Acid catalyzed terpenylations of olivetol in the synthesis of cannabinoids. J. Chem. Soc., Perkin Trans. 1 5, 1243-1250.

12. Razdan, R. K. and Handrick, G. R. (1970) Hashish. V. A stereospecific synthesis of (-)-A1- and (-)-A1(6)-tetrahydrocannabinols. J. Am. Chem. Soc. 92, 6061-6062.

13. Handrick, G. R., Uliss, D. B., Dalzell, H. C., and Razdan, R. K. (1979) Hashish. Part 24. Synthesis of (-)-A9-tetrahydrocannabinol (THC) and its biologically potent metabolite 3'-hydroxy-A9-THC. Tetrahedron Lett. 8, 681-684.

14. Stoss, P. and Merrath, P. (1991) A useful approach towards A9-tetrahydrocannabi-nol. Synlett, 553-554.

15. Mechoulam, R., Braun, P., and Gaoni, Y. (1972) Syntheses of A1-tetrahydro-cannabinol and related cannabinoids. J. Am. Chem. Soc. 94, 6159-6165.

16. Childers, W. E., Jr. and Pinnick, H. W. (1984). A novel approach to the synthesis of the cannabinoids. J. Org. Chem. 49, 5276-5277.

17. Chan, T. H. and Chaly, T. (1982) A biomimetic synthesis of A1-tetrahydrocannabi-nol. Tetrahedron Lett. 23, 2935-2938.

18. Moore, M., Rickards, R. W., and Ronneberg, H. (1984) Cannabinoid studies. IV. Stereoselective and regiospecific syntheses of (±)-A9-trans- and (±)-A9-cis-6a,10a-tetrahydrocannabinol. Aust. J. Chem. 37, 2339-2348.

19. Rickards, R. W. and Roenneberg, H. (1984) Synthesis of (-)-A9-6a,10a-trans-tetrahydrocannabinol. Boron trifluoride catalyzed arylation by a homocuprate. J. Org. Chem. 49, 572-573.

20. Evans, D. A., Shaughnessy, E. A., and Barnes, D. M. (1997) Cationic bis(oxazo-line)Cu(II) Lewis acid catalysts. Application to the asymmetric synthesis of ent-A1-tetrahydrocannabinol. Tetrahedron Lett. 38, 3193-3194.

21. Evans, D. A., Barnes, D. M., Johnson, J. S., et al. (1999) Bis(oxazoline) and bis(oxazolinyl)pyridine copper complexes as enantioselective Diels-Alder catalysts: reaction scope and synthetic applications. J. Am. Chem. Soc. 121, 7582-7594.

22. Nikas, S. P., Thakur, G. A., and Makriyannis, A. (2002) Synthesis of side chain specifically deuterated (-)-A9-tetrahydrocannabinols. J Labelled Compd. Radiopharm. 45, 1065-1076.

23. Nikas, S. P., Thakur, G. A., and Makriyannis, A. (2002) Regiospecifically deuter-ated (-)-A9-tetrahydrocannabivarins. J. Chem. Soc., Perkira Trans. 1 22, 2544-2548.

24. Nikas, S. P., Thakur, G. A., and Makriyannis, A. (2002) A convenient and effective synthesis of 3-(3,5-dimethoxyphenyl)propanal. Synth. Commura. 32, 1751-1756.

25. Nikas, S. P., Grzybovska, J., Papahatjis, D. P., et al. (2004) The role of halogen substitution in classical cannabinoids: a CB1 pharmacophore model. AAPS J. 6, Article 30 (http://www.aapsj.org).

26. Thakur, G. A., Nikas, S. P., Li, C., and Makriyannis, A. (2005) Structural Requirements for cannabinoid receptor probes, in Haradbook of Experimeratal Pharmacology (Pertwee, R. G., ed.), Springer Verlag, New York, Vol. 168, pp. 210-246.

27. Thakur, G. A., Nikas, S. P., and Makriyannis, A. (2005) CB1 cannabinoid receptor ligands. Mirai-Rev. Med. Chem. 5, 631-640.

28. Adams, R., Harfenist, M., and Loewe, S. (1949) New analogs of tetrahydrocannabinol. XIX. J. Am. Chem. Soc. 71, 1624-1628.

29. Huffman, J. W., Miller, J. R. A., Liddle, J., et al. (2003) Structure-activity relationships for 1',1'-dimethylalkyl-A8-tetrahydrocannabinols. Bioorg. Med. Chem. 11, 1397-1410.

30. Liddle, J. and Huffman, J. W. (2001). Enantioselective synthesis of 11-hydroxy-(1 'S,2'R)-dimethylheptyl-A8-THC, a very potent CB1 agonist. Tetrahedron, 57, 7607-7612.

31. Papahatjis, D. P., Kourouli, T., Abadji, V., Goutopoulos, A., and Makriyannis, A. (1998) Pharmacophoric requirements for cannabinoid side chains: multiple bond and C1' -substituted A8-tetrahydrocannabinols. J. Med. Chem. 41, 1195-1200.

32. Papahatjis, D. P., Nikas, S., Tsotinis, A., Vlachou, M., and Makriyannis, A. (2001) A new ring-forming methodology for the synthesis of conformationally constrained bioactive molecules. Chem. Lett. 3, 192-193.

33. Papahatjis, D. P., Nikas, S. P., Andreou, T., and Makriyannis, A. (2002) Novel 1' ,1'-chain substituted A8-tetrahydrocannabinols. Bioorg. Med. Chem. Lett. 12, 3583-3586.

34. Papahatjis, D. P., Nikas, S. P., Kourouli, T., et al. (2003) Pharmacophoric requirements for the cannabinoid side chain. Probing the cannabinoid receptor subsite at C1'. J. Med. Chem. 46, 3221-3229.

35. Mechoulam, R., Lander, N., Srebnik, M., et al. (1987) Stereochemical requirements for cannabimimetic activity. NIDA Res. Monogr. 79, 15-30.

36. Mechoulam, R., Feigenbaum, J. J., Lander, N., et al. (1988) Enantiomeric cannabi-noids: stereospecificity of psychotropic activity. Experientia 44, 762-764.

37. Devane, W. A., Breuer, A., Sheskin, T., Jarbe, T. U., Eisen, M. S., and Mechoulam, R. (1992) A novel probe for the cannabinoid receptor. J. Med. Chem. 35, 2065-2069.

38. Yan, G., Yin, D., Khanolkar, A. D., Compton, D. R., Martin, B. R., and Makriyannis, A. (1994) Synthesis and pharmacological properties of 11-hydroxy-3-(1',1'-dimethylheptyl)hexahydrocannabinol: a high-affinity cannabinoid agonist. J. Med. Chem. 37, 2619-2622.

39. Wilson, R. S., May, E. L., Martin, B. R., and Dewey, W. L. (1976) 9-Nor-9-hydrox-yhexahydrocannabinols. Synthesis, some behavioral and analgesic properties, and comparison with the tetrahydrocannabinols. J. Med. Chem. 19, 1165-1167.

40. Mechoulam, R., Lander, N., Breuer, A., and Zahalka, J. (1990) Synthesis of the individual, pharmacologically distinct enantiomers of a tetrahydrocannabinol derivative. Tetrahedron: Asymmetry 1, 315-318.

41. Guo, Y., Abadji, V., Morse, K. L., Fournier, D. J., Li, X., and Makriyannis, A. (1994) (-)-11 -Hydroxy-7'-isothiocyanato-1 ',1'- dimethylheptyl-A8-THC: a novel, high-affinity irreversible probe for the cannabinoid receptor in the brain. J. Med. Chem. 37, 3867-3870.

42. Pop, E., Rachwal, B., Rachwal, S., Vlasak, J., Brewster, M. E., and Prokai, L. (1998) Synthesis of deuterated dexanabinol, a nonpsychotropic cannabinoid with neuroprotective properties. J. Labelled Compd. Pharm. 41, 885-897.

43. Picone, R. P., Fournier, D. J., and Makriyannis, A. (2002) Ligand based structural studies of the CB1 cannabinoid receptor. J. Pept. Res. 60, 348-356.

44. Mechoulam, R., Lander, N., Varkony, T. H., et al. (1980) Stereochemical requirements for cannabinoid activity. J. Med. Chem. 23, 1068-1072.

45. Busch-Petersen, J., Hill, W. A., Fan, P., et al. (1996) Unsaturated side chain P-11-hydroxyhexahydrocannabinol analogs. J. Med. Chem. 39, 3790-3796.

46. Drake, D. J., Jensen, R. S., Busch-Petersen, J., et al. (1998) Classical/nonclassical hybrid cannabinoids: southern aliphatic chain-functionalized C-6P methyl, ethyl and propyl analogues. J. Med. Chem. 41, 3596-3608.

47. Harrington, P. E., Stergiades, I. A., Erickson, J., Makriyannis, A., and Tius, M. A. (2000) Synthesis of functionalized cannabinoids. J. Org. Chem. 65, 6576-6582.

48. Edery, H., Porath, G., Mechoulam, R., Lander, N., Srebnik, M., and Lewis, N. (1984) Activity of novel aminocannabinoids in baboons. J. Med. Chem. 27, 1370-1373.

49. Archer, R. A., Stark, P., and Lemberger, L. (1986) Nabilone, in Cannabinoids as Therapeutic Agents (Mechoulam, R., ed.), CRC Press, Boca Raton, FL, pp. 85-103.

50. Archer, R. A., Blanchard, W. B., Day, W. A., et al. (1977) Cannabinoids. 3. Synthetic approaches to 9-ketocannabinoids. Total synthesis of nabilone. J. Org. Chem. 42, 2277-2284.

51. Coxon, J. M., Garland, R. P., and Hartshorn, M. P. (1970) Derivatives of nopinone. Aust. J. Chem. 23, 1069-1071.

52. Johnson, M. R. and Melvin, L. S. (1986) The discovery of non-classical cannabi-noid analgesics, in Cannabinoids as Therapeutic Agents (Mechoulam, R., ed.), CRC Press, Boca Raton, FL, pp. 121-145.

53. Little, P. J., Compton, D. R., Johnson, M. R., Melvin, L. S., and Martin, B. R. (1988) Pharmacology and stereoselectivity of structurally novel cannabinoids in mice. J. Pharmacol. Exp. Ther. 247, 1046-1051.

54. Melvin, L. S., Johnson, M. R., Harbert, C. A., Milne, G. M., and Weissman, A. (1984) A cannabinoid derived prototypical analgesic. J. Med. Chem. 27, 67-71.

55. Melvin, L. S., Milne, G. M., Johnson, M. R., Subramaniam, B., Wilken, G. H., and Howlett, A. C. (1993) Structure-activity relationships for cannabinoid receptor-binding and analgesic activity: studies of bicyclic cannabinoid analogs. Mol. Pharmacol. 44, 1008-1015.

56. Melvin, L. S., Milne, G. M., Johnson, M. R., Wilken, G. H., and Howlett, A. C. (1995) Structure-activity relationships defining the ACD-tricyclic cannabinoids: cannabinoid receptor binding and analgesic activity. Drug Des. Discov. 13,155-166.

57. Chu, C., Ramamurthy, A., Makriyannis, A., and Tius, M. A. (2003) Synthesis of cova-lent probes for the radiolabeling of the cannabinoid receptor. J. Org. Chem. 68, 55-61.

58. Tius, M. A., Makriyannis, A., Long Zou, X., and Abadji, V. (1994) Conformationally restricted hybrids of CP-55,940 and HHC: stereoselective synthesis and activity. Tetrahedron 50, 2671-2680.

59. Tius, M. A., Busch-Petersen, J., and Marris, A. R. (1997) Synthesis of a Afunctional cannabinoid ligand. J. Chem. Soc. Chem. Commun. 19, 1867-1868.

60. Thakur, G. A., Palmer, S. L., Harrington, P. E., Stergiades, I. A., Tius, M. A., and Makriyannis, A. (2002) Enantiomeric resolution of a novel chiral cannabinoid receptor ligand. J. Biochem. Biophys. Methods 54, 415-422.

61. Brown, H. C. and Geoghegan, P. J., Jr. (1970) Solvomercuration-demercuration. I. Oxymercuration-demercuration of representative olefins in an aqueous system. Mild procedure for the Markovnikov hydration of the carbon-carbon double bond. J. Org. Chem. 35, 1844-1850.

62. Tius, M. A. and Busch-Petersen, J. (1994) Stereochemical control in the oxymer-curation of 5-alken-1-ols. Tetrahedron Lett. 35, 5181-5184.

63. Trost, B. M., Sorum, M. T., Chan, C., and Ruehter, G. (1997) Palladium-catalyzed additions of terminal alkynes to acceptor alkynes. J. Am. Chem. Soc. 119, 698-708.

64. Bell, M. R., D'Ambra, T. E., Kumar, V., et al. (1991) Antinociceptive (aminoalkyl)indoles. J. Med. Chem. 34, 1099-1110.

65. D'Ambra, T. E., Estep, K. G., Bell, M. R., et al. (1992) Conformationally restrained analogues of pravadoline: nanomolar potent, enantioselective, (aminoalkyl) indole agonists of the cannabinoid receptor. J. Med. Chem. 35, 124-135.

66. Eissenstat, M. A., Bell, M. R., D'Ambra, T. E., et al. (1995) Aminoalkylindoles: structure-activity relationships of novel cannabinoid mimetics. J. Med. Chem. 38, 3094-3105.

67. Seguin, R. J. and Filer, C. N. (2003) Synthesis and characterization of the potent cannabinoid agonist [naphthyl-3H]WIN55212-2 at high specific activity. J.

Labelled Compd. Pharm. 46, 67-71.

68. D'Ambra, T. E., Eissenstat, M. A., Abt, J., et al. (1996) C-attached aminoalkylin-doles: potent cannabinoid mimetics. Bioorg. Med. Chem. Lett. 6, 17-22.

69. Rinaldi-Carmona, M., Barth, F., Heaulme, M., et al. (1994). SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett. 350, 240-244.

70. Lan, R., Liu, Q., Fan, P., et al. (1999) Structure-activity relationship of pyrazole derivatives as cannabinoid receptor antagonists. J. Med. Chem. 42, 776-779.

71. Nakamura-Palacios, E. M., Moerschbaecher, J. M., and Barker, L. A. (1999). The pharmacology of SR 141716A: a review. CNS Drug Rev. 5, 43-58.

72. Seltzman, H. H., Carroll, F. I., Burgess, J. P., Wyrick, C. D., and Burch, D. F.

(1995) Synthesis, spectral studies and tritiation of the cannabinoid antagonist SR141716A. J. Chem. Soc., Chem. Commun. 15, 1549-1550.

73. Lan, R., Gatley, S. J., and Makriyannis, A. (1996) Preparation of iodine-123 labeled AM251: a potential SPECT radioligand for the brain cannabinoid CB1 receptor. J. Labelled Compd. Radiopharm. 38, 875-881.

74. Lan, R., Gatley, J., Lu, Q., et al. (1999) Design and synthesis of the CB1 selective cannabinoid antagonist AM281: a potential human SPECT ligand. AAPS J. 1, Article 4 (http://www.aapsj.org).

75. Devane, W. A., Hanus, L., Brewer, A., et al. (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946-1949.

76. Mechoulam, R., Ben-Shabat, S., Hanus, L., et al. (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83-90.

77. Mechoulam, R., Ben Shabat, S., Hanus, L., et al. (1996) Endogenous cannabinoid ligands—chemical and biological studies. J. Lipid Mediat. Cell Signal. 14, 45-49.

78. Stella, N., Schweitzer, P., and Piomelli, D. (1997) A second endogenous cannabi-noid that modulates long-term potentiation. Nature 388, 773-778.

79. Hanus, L., Abu-Lafi, S., Fride, E., et al. (2001) 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc. Natl. Acad. Sci. USA 98, 3662-3665.

80. Khanolkar, A. D. and Makriyannis, A. (1999) Structure-activity relationships of anandamide, an endogenous cannabinoid ligand. Life Sci. 65, 607-616.

81. Palmer, S. L., Khanolkar, A. D., and Makriyannis, A. (2000) Natural and synthetic endocannabinoids and their structure-activity relationships. Curr. Pharm. Des. 6, 1381-1397.

82. Reggio, P. H. (2002) Endocannabinoid structure-activity relationships for interaction at the cannabinoid receptors. Prostaglandins Leukot. Essent. Fatty Acids 66,143-160.

83. Thomas, B. F., Adams, I. B., Mascarella, S. W., Martin, B. R., and Razdan, R. K.

(1996) Structure-activity analysis of anandamide analogs: relationship to a cannabinoid pharmacophore. J. Med. Chem. 39, 471-479.

84. Hoegberg, T., Stroem, P., Ebner, M., and Raemsby, S. (1987) Cyanide as an efficient and mild catalyst in the aminolysis of esters. J. Org. Chem. 52, 2033-2036.

85. Abadji, V., Lin, S., Taha, G., et al. (1994) (R)-Methanandamide: a chiral novel anandamide possessing higher potency and metabolic stability. J. Med. Chem. 37, 1889-1893.

86. Corey, E. J., Cashman, J. R., Kantner, S. S., and Wright, S. W. (1984) Rationally designed, potent competitive inhibitors of leukotriene biosynthesis. J. Am. Chem. Soc. 106, 1503-1504.

87. Barnett-Norris, J., Guarnieri, F., Hurst, D. P., and Reggio, P. H. (1998) Exploration of biologically relevant conformations of anandamide, 2-arachidonylglycerol, and their analogues using conformational memories. J. Med. Chem. 41, 4861-4872.

88. Ryan, W. J., Banner, W. K., Wiley, J. L., Martin, B. R., and Razdan, R. K. (1997) Potent anandamide analogs: the effect of changing the length and branching of the end pentyl chain. J. Med. Chem. 40, 3617-3625.

89. Seltzman, H. H., Fleming, D. N., Thomas, B. F., et al. (1997) Synthesis and pharmacological comparison of dimethylheptyl and pentyl analogs of anandamide. J. Med. Chem. 40, 3626-3634.

90. Di Marzo, V., Bisogno, T., De Petrocellis, L., et al. (2001) Highly selective CB1 cannabinoid receptor ligands and novel CB1/VR1 vanilloid receptor "hybrid" lig-ands. Biochem. Biophys. Res. Commun. 281, 444-451.

91. Manna, S., Falck, J. R., Chacos, N., and Capdevila, J. (1983) Synthesis of arachi-donic acid metabolites produced by purified kidney cortex microsomal cytochrome P-450. Tetrahedron Lett. 24, 33-36.

92. Falck, J. R., Lumin, S., Blair, I., et al. (1990) Cytochrome P-450-dependent oxidation of arachidonic acid to 16-, 17-, and 18-hydroxyeicosatetraenoic acids. J. Biol. Chem. 265, 10244-10249.

93. Falck, J. R., Sun, L., Lee, S. G., et al. (1992) Enantiospecific synthesis of 17- and 18-hydroxyeicosatetraenoic acids, cytochrome P450 arachidonate metabolites. Tetrahedron Lett. 33, 4893-4896.

94. Heckmann, B., Mioskowski, C., Lumin, S., Falck, J. R., Wei, S., and Capdevila, J. H. (1996) Chiral acetals: stereocontrolled syntheses of 16-, 17-, and 18-hydroxye-icosatetraenoic acids, cytochrome P-450 arachidonate metabolites. Tetrahedron Lett. 37, 1425-1428.

95. Dasse, O., Mahadevan, A., Han, L., Martin, B. R., Marzo, V. D., and Razdan, R. K. (2000) The synthesis of N-vanillyl-arachidonoyl-amide (Arvanil) and its analogs: an improved procedure for the synthesis of the key Synthon methyl 14-hydroxy-(all-cis)-5,8,11-tetradecatrienoate. Tetrahedron 56, 9195-9202.

96. Crombie, L., Haigh, D., Jones, R. C. F., and Mat-Zin, A. R. (1993) Synthesis of the alkaloid homaline in (±) and natural (S,S)-(-) forms, using amination and transamidative ring expansion in liquid ammonia. J. Chem. Soc., Perkin Trans. 1 17, 2047-2054.

97. Durand, S., Parrain, J.-L., and Santelli, M. (1998) A large-scale and concise synthesis of g-linolenic acid from 4-chlorobut-2-yn-1-ol. Synthesis 7, 1015-1018.

98. Brown, H. C. and Brown, C. A. (1963) Reaction of sodium borohydride with nickel acetate in ethanol solution; a highly selective nickel hydrogenation catalyst. J. Am. Chem. Soc. 85, 1005-1006.

Cannabinoid Receptor Binding to Membrane Homogenates and Cannabinoid-Stimulated [35S]GTPyS Binding to Membrane Homogenates or Intact Cultured Cells

Was this article helpful?

0 0

Post a comment