Pronunciation: meth-am-FET-uh-meen Chemical Abstracts Service Registry Number: 537-46-2 Formal Names: Anadrex, Desoxyn, Norodin, Pervertin, Stimulex Informal Names: Bambita, Bathtub Crank, Batu, Blue Meth, Boo, Bump, Chalk, Chicken Feed, Crank, Crink, Cris, Cristina, Cristy, Croak, Crossles, Crypto, Crystal, Crystal Meth, Desocsins, Desogtion, Geep, Glass, Go-Fast, Granulated Orange, Hanyak, Hironpon, Hiropon, Hot Ice, Ice, Jet Fuel, Kaksonjae, L.A. Glass, L.A. Ice, Lemon Drop, Load of Laundry, Maui-Wowie, Meth, Methlies Quik, Mexican Crack, Motorcycle Crack, Nazi Vitamins, Peanut Butter, Quartz Smok-able, Quill Cocaine, Red Devils, Redneck Cocaine, Schmiz, Scootie, Shabu Ice, Sketch, Smoke, Soap Dope, Sparkle, Speed, Spoosh, Stove Top, Super Ice, Tick Tick, Trash, Twisters, Water, Wet, White Cross, Working Man's Cocaine, Yellow Bam, Yellow Powder Type: Stimulant (amphetamine class). See page 12 Federal Schedule Listing: Schedule II (DEA no. 1105) USA Availability: Prescription Pregnancy Category: C

Uses. Methamphetamine was first manufactured in 1919. This stimulant of the central and sympathetic nervous systems is comparable to dextroamphetamine. Psychic effects are the same as for any amphetamine class drug.

Methamphetamine is used to treat narcolepsy, attention deficit hyperactivity disorder (ADHD), and adult obesity. Typically the drug is not recommended for juvenile obesity. Although patients lose more weight than if they use a placebo, the difference is only a few ounces per week. Researchers do not know how the drug promotes weight loss. Scientists are even unsure if the drug is responsible or if diet, coaching, attitude, and other factors explain the difference. In general, the longer patients take the drug, the lower their rate of weight loss. Standard practice is to stop the drug when weight benefits decline, rather than increase dosage.

To achieve top performance during World War II, pilots of the German Luftwaffe and the British Royal Air Force used methamphetamine. In 1953 Hermann Buhl was the first person to climb the mountain Nanga Parbat in the Himalayas, and during that feat he used methamphetamine tablets. Some observers wonder if that pharmaceutical aid was crucial. A person who climbed Mt. Everest without using supplementary oxygen noted, "Because mountaineering is, thank God, not an organized Olympic sport, there are no regulations about the use of drugs, so the choice is up to the individual." When methamphetamine was tested on champion cyclist athletes, they could not achieve a higher level of performance than normal, but they could extend top performance far longer than normal, a feat made possible in part by the drug's apparent ability to mask the body's normal signals of exhaustion. Researchers speculate that the drug could cause athletes to overextend themselves, collapse, and die. Another experiment found that the drug could improve work performance, but performing a few tasks under controlled conditions cannot be extrapolated to the whole world of real-life work.

The human body metabolizes assorted medical drugs into dextroamphetamine and methamphetamine, so if a body fluid test is used to accuse someone of unauthorized use, a blameless person should check whether any over-the-counter or prescribed drugs might be the explanation.

Drawbacks. Measurements have found damage to brain neurons correlated with amount of methamphetamine abuse, damage that does not seem to recover upon cessation of drug dosage. Some of that damage may promote Parkinson's disease. Tests show normal scores for methamphetamine abusers on some psychological perception tests, below normal scores on others. Animal experiments confirm that methamphetamine can alter DNA molecules, and some researchers ask whether these changes may invalidate DNA identifications made by law enforcement authorities.

Methamphetamine raises blood pressure; the most catastrophic consequence can be rupture of the aorta. The compound raises body temperature. Euphoria and overdose symptoms are similar to those of cocaine but last longer. Meth-amphetamine overdose can cause convulsions, heart attack, kidney failure, and stroke. Stroke can occur days after overdosage. Temporary blindness has developed. The drug can severely and permanently impair vision, apparently by temporarily cutting blood flow to the optic nerve. Serious ulcers may develop in the cornea. Although methamphetamine can slightly stimulate breathing and help open lung airways, the substance can also produce temporary emphysema. Animal experiments and human experience indicate that concealed heart damage caused by the drug can repair itself if methamphet-amine administration ceases.

Methamphetamine's smokable format is considered twice as strong as dex-troamphetamine, can produce pulmonary edema, and has been identified as causing skin affliction. Smoking methamphetamine can narrow blood vessels, which will increase blood pressure. Another suspected consequence of the narrowing is acidosis found among methamphetamine users, a condition in which levels of acid in blood rise high enough to make a person sick. Studies of patients suffering from harm to bones and to skeletal muscles have found possible association with methamphetamine. Ischemic colitis, a bowel problem normally associated with old age, has been seen among young methamphet-amine users. The substance is also associated with duodenal ulcers and malignant giant gastric ulcers. Inhaling the drug (as opposed to smoking, injecting, or swallowing) promotes excessive wear on teeth.

Methamphetamine affects insulin needs of diabetics. Persons with the same physical afflictions that make dextroamphetamine inadvisable should also avoid methamphetamine.

Abuse factors. Experiments with intravenous injection of pure pharmaceutical methamphetamine found that recipients did not experience the almost instantaneous rush of effect that would normally be expected from such a path of administration. Recipients instead began experiencing significant effects hours later. A study of Japanese abusers receiving treatment for their drug habit compared injectors to smokers. Injectors had less schooling and more criminality and were more likely to have alcoholic parents. Such background is typical in persons having a bad relationship with drugs. Contented people rarely fall victim to drug abuse.

Methamphetamine flashbacks are possible. Someone who experienced a threatening situation while undergoing frightening psychosis brought on by methamphetamine can have a flashback when later confronted with a mildly stressful situation. In one study of abusers methamphetamine was blamed for long-term psychosis, in one case lasting 38 years after abuse stopped, but most of those patients also had other troubles (broken homes, criminality) promoting maladjustment.

Persons who abuse methamphetamine are typically disappointed with their lives. The drug is sometimes blamed for causing "amotivational syndrome" in which abusers lack much interest in life, but abusers typically have much to be discouraged about regardless of drug use. One study of Japanese alcoholics compared those who had also abused methamphetamine to those who had not. The abusers were more afflicted with alcohol hallucinations, were much less likely to live together with someone, and were twice as likely to collect welfare and three times as likely to live in slums. (And about one fourth of the abusers had tattoos versus none of the nonabusers—the researchers called the variation "significant," but that term was surely meant in its statistical sense.) Another study of Japanese abusers found that only 5% came from an upper income background, in contrast to 71% of marijuana users. Still another study of Japanese abusers found that they ended their schooling early, hung out with gangs or other groups, and experienced effects typical of amphetamine class drugs (restlessness, irritability, low appetite, suspicion of other persons). Some negative aspects seemed to depend on how much the drug users perceived themselves as victims of society. Pepped-up feelings and drug-induced happiness declined as methamphetamine abuse continued over the years. One authority has noted that persons who get drunk on alcohol every day are five times more prone to smoke methamphetamine than persons who consume alcohol either moderately or not at all. This does not mean that alcohol itself promotes methamphetamine use, but a person who is so miserable as to get drunk daily will also be likely to seek additional ways to obliterate perception of problems. One of those choices may be methamphet-amine.

Compared to persons who don't abuse methamphetamine, abusers are known for more frequently engaging in risky sexual practices (no condoms, partners with sexually transmitted diseases, multiple casual partners). Less is known about whether such conduct is promoted by the drug or whether the drug is simply one component of a life filled with risk-taking.

Methamphetamine abusers tend to get injured more often in accidents than nonusers. That correlation, however, does not tell us whether the cause is the drug or a reckless lifestyle that happens to include drug abuse—one study of methamphetamine user deaths found that over 25% were murders. Types of accidents experienced by methamphetamine users are similar to those suffered by alcohol abusers, with road mishaps being most common. A study of violent emergency room patients requiring "chemical restraint" (that is, involuntary administration of a sedating drug) found that 72% were intoxicated with methamphetamine, and many were also drunk on alcohol. Violent patients requiring restraint are, of course, a small minority; those figures do not mean that 72% of all patients were using methamphetamine. The figures do, however, indicate that persons who lose control of themselves cannot handle meth-amphetamine well, or alcohol either.

As for the drug's popularity, a 1999 analysis found that deaths related to methamphetamine in San Francisco had not particularly risen over a 13-year period. In contrast, toxicology tests at a California hospital (not involving all patients) showed 3% positive for either dextroamphetamine or methamphet-amine or both in 1978, 10% in 1986 and 1987. Another California hospital found that 7.4% of trauma patients had been using the drug in 1989, 13.4% in 1994. As the drug promotes medical problems, we can expect evidence of methamphetamine abuse to be higher in a hospital patient population (composed of people seeking medical help) than in the general population. When the twenty-first century began, about 2% of the general American population was estimated to have used methamphetamine one or more times in their lives, and the percentage of regular users would be lower than that. Patients in medical cases examined in California, Taiwan, and Japan tend to be male, perhaps indicating a gender preference in use of this drug. Evidence exists for a gender difference in psychic reaction to the drug, with males feeling pepped up and happy while under the influence and postmenopausal women feeling tired and sad. The substance causes more brain changes in male mice than in female.

Drug interactions. Methamphetamine can have serious interactions with anesthesia and opioid drugs given in dentistry. Animal research indicates that smoking tobacco cigarettes can create a multiplier effect in which the nicotine and methamphetamine interact, boosting each other's potency. Opiate addicts receiving oral methadone report that injecting themselves with methamphetamine produces a heroin-type high lasting a full 24 hours.

A hospital emergency room study found that persons admitted for the same cause of injury had lower alcohol level in their blood if they had also been taking methamphetamine. Combining the two drugs allows mice to tolerate a higher methamphetamine dose than normal, but research on humans finds just the opposite, that alcohol can transform a normal dose of methampheta-mine into a fatal one. Laboratory research on humans shows that using the two drugs together adds strain on the heart, while reducing pleasure gained from the alcohol and maintaining mental satisfaction from the methamphet-amine. An unusual report tells of that drug combination rupturing a bladder, the alcohol helping to fill it up as the methamphetamine narrowed the bladder neck while taking away the normal sensation of pain that would warn a person to seek medical help.

Cancer. Not enough scientific information to report.

Pregnancy. Pregnant methamphetamine abusers tend to produce full-term babies having characteristics of premature infants. While such a problem merits attention, a California study of 563,573 women who gave birth in 1992 helped put a perspective on the situation: Only 774 used methamphetamine during their pregnancies. Pooling results from seven California hospitals provided still another perspective. Among one group of mothers in 1996 and 1997, 0.5% had positive drug tests for methamphetamine during pregnancy, and those women typically used other drugs as well. And that percentage is not from the total population of pregnant women but only from those whose infants required assistance in breathing, a group where drug abuse was more prevalent.

Animal studies involving many times the normal human medical dose have produced birth defects. Confirming fetal harm from methamphetamine in humans is difficult because of other drugs the women use (particularly alcohol), nutrition, amount of prenatal care, and other factors that simultaneously affect fetal development. Methamphetamine accumulates in the fetus where blood level can be two and even six times higher than elsewhere in the woman's body. One study measuring pregnancy outcome where umbilical blood showed misuse only of methamphetamine found the infants to be normal.

Additional scientific information may be found in:

Anglin, M.D., et al. "History of the Methamphetamine Problem." Journal of Psychoactive

Drugs 32 (2000): 137-41. Beebe, D.K., and E. Walley. "Smokable Methamphetamine ('Ice'): An Old Drug in a

Different Form." American Family Physician 51 (1995): 449-53. Boe, N.M., et al. "Methamphetamine Use during Pregnancy Increases the Risk of Adverse Maternal and Neonatal Outcomes." American Journal of Obstetrics and Gynecology 180 (January 1999, pt. 2): S71. Lan, K.C., et al. "Clinical Manifestations and Prognostic Features of Acute Methamphetamine Intoxication." Journal of the Formosan Medical Association 97 (1998): 528-33.

Logan, B.K. "Methamphetamine and Driving Impairment." Journal of Forensic Sciences 41 (1996): 457-64.

Mayfield, D.G. "Effects of Intravenous Methamphetamine." International Journal of the

Addictions 8 (1973): 565-68. Mendelson, J., et al. "Methamphetamine and Ethanol Interactions in Humans." Clinical

Pharmacology and Therapeutics 57 (1995): 559-68. Simon, S.L., et al. "Cognitive Impairment in Individuals Currently Using Metham-phetamine." American Journal on Addictions 9 (2000): 222-31.

Continue reading here: USA Availability Prescription

Was this article helpful?

+1 0