Alphabetical Listings of Drugs

Sobriety Success

At Home Drug Withdrawal

Get Instant Access

Drug descriptions occasionally mention the following concepts:

One drug may be stronger than another, but such a comparison depends not only on the effect being measured but on the animal species being tested. Frogs, chickens, and rats may react very differently than humans would to an equivalent dose of various drugs. For example, bufotenine and LSD effects are thousands of times stronger in humans than in monkeys; a dose that leaves a small monkey unfazed might devastate a human. Animal experiments are useful to know about, but the results do not necessarily extrapolate to humans. When this book compares strengths of drugs, the comparison simply gives a rough idea of strengths and has no bearing on determining what size dose of one drug would be equivalent to another size dose of a different substance.

When one drug is said to "boost" the effect of another, this means the increase is more than would be expected from simply adding the effect of one drug to the other (1 + 1 = 2) but instead involves synergistic chemical and biological processes yielding a total that is more than the combination of parts (1 + 1 = 3).

"Flashback" is an ability (voluntary or involuntary) to reexperience a drug state without taking the substance. Some details about flashback are given in this book's description of LSD, although the phenomenon is not limited to that drug (see also, for example, this book's listings about methamphetamine and psilocybin).

"Polydrug" abuse is a typical element of setting. For example, heroin addicts normally abuse other drugs as well. Someone who takes MDMA at a dance club may well take cocaine at the same time, just as some persons simultaneously smoke tobacco and drink alcohol. Even if all the compounds inside an illicit user can be verified, determining which is responsible for which effect can be challenging. This book's alphabetical section presents both the conclusions and doubts that scientists express about polydrug use, along with some classic interactions that occur when more than one drug is taken at the same time. Individuals who get into a medical emergency after drug use should bring samples of substances to health care providers; an item may not be what a user thinks it is, and effective treatment must be based on chemical reality rather than consumer belief.

Animal experiments may show that a drug can cause cancer or birth defects. The practical meaning of such results is sometimes clouded because the same drug may affect different species in different ways. Also animal tests sometimes involve many times the recommended human dose, perhaps levels high enough to poison the animals. These kinds of tests are not meaningless but may involve levels of risk unlikely to be experienced by humans. And yet large doses having no effect on animals do not guarantee a drug's safety for pregnant women. In some countries a compound called thalidomide was approved for human use after animal tests revealed no potential for causing birth defects, but in humans the substance produced severe congenital malformations such as missing or highly deformed limbs.

Experiments testing a drug occasionally produce conflicting results—some may say a drug does something; some may indicate the drug will not do it. These kinds of uncertainties are unsatisfying, but that is the way scientific research operates. Perhaps conflicting results come from differences in dosage size, or the manner in which a dose is given, or diet, or living conditions, or any number of other causes. Perhaps the conflict is due to researcher errors—a classic error being failure to run adequate controls (for example, failing to give the drug and a placebo in the same manner to a large number of the same kind of experimental subjects). The size of a drug experiment can also be a problem. Many involve a handful of volunteers. Conclusions from small studies (that is, studies involving a small number of test subjects) are not as significant as conclusions from studies measuring thousands of persons. Sometimes drug effect information is based on medical case reports, in which something has happened to one person but has not been experimentally tested to determine how typical the effect is. Malnourishment and physical afflictions can affect drug actions. Another tricky angle occurs when reports say a drug is "associated" with an effect, meaning the drug is administered and an effect follows. "Before and after" time sequence is not the same as "cause and effect" (chanting may be associated with the subsequent end of a solar eclipse, but it does not cause the termination). In scientific drug reports what scientists say about drugs can be less certain than what public policymakers say.

This section of the book strives to present the consensus of mainstream scientific thought. However, sometimes the only available information comes from observations lacking experimental confirmation, at the present time; the reader should keep in mind that by definition such observations are not yet part of a consensus even if they are reported in scientific journals.

Was this article helpful?

0 0
An Addict's Guide To Freedom

An Addict's Guide To Freedom

Get All The Support And Guidance You Need To Be A Success At Understanding And Getting Rid Of Addictions. This Book Is One Of The Most Valuable Resources In The World When It Comes To New Ways To Understand Addicts And Get Rid Of Addictions.

Get My Free Ebook


Post a comment